{"title":"An Intelligent Denoising Method for Jamming Pattern Recognition under Noisy Conditions","authors":"Changhua Yao, LI Yang, Yufan Chen, Kaixin Cheng","doi":"10.13164/re.2024.0322","DOIUrl":"https://doi.org/10.13164/re.2024.0322","url":null,"abstract":". Accurate identification of jamming patterns is a crucial decision-making basis for anti-jamming in wireless communication systems. Current works still face challenges in fully considering the substantial influence of environmental noise on identification performance. To address the issue, this paper proposes an automatic threshold denoising-based deep learning model. The proposed method aims to mitigate the impact of noise on recognition performance within the feature space. Considering the challenges posed by non-linear transformations in deep denoising, a shallow denoising approach based on deep learning is proposed. By constructing a dataset of 12 jamming patterns under noisy conditions, the proposed method exhibits excellent recognition performance and maintains a low computational cost.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141231654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Test Evaluation Method for Second-order Intermodulation False Alarm Interference","authors":"X. Du, G. H. Wei, D. L. Wu, X. D. Pan","doi":"10.13164/re.2024.0329","DOIUrl":"https://doi.org/10.13164/re.2024.0329","url":null,"abstract":". Aiming at the quantitative evaluation requirements of radar second-order intermodulation false alarm (SIFA) effect, a radar SIFA effect model is established from the field-circuit coupling mechanism, and the parameter test method of the model is given. Taking a certain type of radar as the test object, the SIFA effect test is carried out by using the method of electromagnetic injection equivalent substitution irradiation. The results show that the tested radar will produce a SIFA signal higher than the selected sensitive level when the frequency difference of dual-frequency electromagnetic interference (EMI) is within 3 MHz and the frequency offset is within ±200 MHz. Using the model parameters of the SIFA interference effect measured in the experiment, it is assumed that they do not change with the interference field strength. Combined with the SIFA interference field strength of the tested radar and the single frequency blocking critical interference field strength, the effect model can evaluate the degree of radar SIFA interference.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141229325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reconstruction of Mixed Boundary Objects and Classification Using Deep Learning and Linear Sampling Method","authors":"S. B. Harisha, E. Mallikarjun, M. Amit","doi":"10.13164/re.2024.0299","DOIUrl":"https://doi.org/10.13164/re.2024.0299","url":null,"abstract":"","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141233422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance of the User in the TDD NOMA Cellular Networks Enabling FFR","authors":"B. Luu, S.-C. Lam, N.-H. Nguyen, T.-M. Hoang","doi":"10.13164/re.2024.0312","DOIUrl":"https://doi.org/10.13164/re.2024.0312","url":null,"abstract":". Improving the user performance and spectrum efficiency are urgent problems for 5G and beyond 5G (B5G) cellular networks to support high Quality of Services such as enhanced mobile broadband, ultra-reliable, and low latency communications. Together with Fractional Frequency Reuse (FFR), Time Division Duplex (TDD) and Non-Orthogonal Multi-Access (NOMA) are promising the potential solutions for these problems. While the related researches focus on the single or combination two of three techniques, this paper proposes a system that combination of all three techniques to improve the data rate on the uplink sub-band. Specifically, each couple of Cell-Center User (CCU) and Cell-Edge User (CEU) in a given cell, that is defined by the FFR technique, is allowed to transmit on the same sub-band by the meaning of power-domain NOMA technique. In addition, the TDD technique allow the sharing sub-band between the user and Base Station (BS). The analytical results in Nakagami-𝑚 fading and regular path loss model shows that achievable total data rate on the shared sub-band in the proposed system model is 18.2% and 125% higher than that in the regular one with TDD and NOMA, respectively. The data rate improvement of the proposed system model proves the feasibility of co-exits of these techniques in the B5G systems.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141230725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design of Multi-bit Pulsed Latches with Scan Input in CMOS ONK65 Technology","authors":"V. Kral","doi":"10.13164/re.2023.0557","DOIUrl":"https://doi.org/10.13164/re.2023.0557","url":null,"abstract":". This paper presents a new multi-bit pulse latch design that places innovative emphasis on the integration of scan input for automatic test pattern generation (ATPG). Two different designs have been developed in ONK65 technology (65 nm process): the first with standard threshold voltage (SVT) tailored for consumer products and the second with high threshold voltage (HVT) for automotive, each addressing specific aspects of process, voltage, and temperature (PVT). Multi-bit pulse latches offer a more efficient alternative to multi-bit flip-flop circuits and promise significant power and area savings. However, the efficiency of these latches depends on the technology, library type and customer requirements. A multi-bit pulse latch consists of a pulse generator and a pulsed latch. Each component is carefully designed for its specific purpose and the most appropriate topology is selected. Furthermore, the paper serves as a comprehensive guide to the design of low-power digital cells. It rethinks the topology design approach by emphasizing the scan input and presents simulation results for both components of the multi-bit pulse latch, highlighting their advantages. The results show that a less strict PVT offers greater benefits than a strict PVT.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138621100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of NOMA Downlink Network Parameters under Harvesting Energy Strategy Using Multi-Objective GWO","authors":"F. Titel, M. Belattar","doi":"10.13164/re.2023.0492","DOIUrl":"https://doi.org/10.13164/re.2023.0492","url":null,"abstract":". Non-orthogonal multiple access technique (NOMA) is based on the principle of sharing the same physical resource, over several power levels, where user’s signals are transmitted by using the superposition-coding scheme at the transmitter and these users signals are de-coded by the receiver by means of successive interference cancellation technique (SIC). In this work, performance of NOMA Downlink network under Rayleigh fading distribution is studied, in the power domain where a power beacon (PB) is used to help a base station (BS) to serve distant users, by Wireless Power Transfer (WPT). The harvested energy permits by the BS, supports information signal transmission to NOMA users. This concept can be an effective way to power Internet of Things (IoT) devices, reduce battery dependency, and promote energy sustainability and may be used in SWIPT systems and vehicular networks. To improve the key performance indicators of the system expressed by the outage performance of NOMA users and system throughput, a Multi-Objective Grey Wolf Optimizer algorithm (MOGWO) is used to find optimal values of several influencing parameters. These parameters are partition time expressing the harvesting energy time, the power conversion factor and power allocation coefficients","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138619878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Single Active Block-Based Emulators for Electronically Controllable Floating Meminductors and Memcapacitors","authors":"M. Tatović, P. B. Petrovic","doi":"10.13164/re.2023.0568","DOIUrl":"https://doi.org/10.13164/re.2023.0568","url":null,"abstract":". This paper introduces two novel emulator circuits that employ a single active block. The first circuit utilizes a Voltage Differencing Transconductance Amplifier (VDTA) to emulate the behavior of a floating/grounded incremental/decremental flux-controlled meminductor. The second circuit, based on a Voltage Differencing Current Conveyor (VDCC), emulates the characteristics of mem-capacitance. Both emulation circuits are constructed using capacitors as the only type of grounded passive element. Notably, these circuits possess electronic tunability, enabling control over the realized inverse meminduct-ance/memcapacitance. The theoretical analysis of the proposed emulators includes an investigation into potential non-idealities and parasitic effects. By carefully selecting the passive circuit elements, efforts were made to minimize the impact of these unwanted effects. In comparison to existing designs documented in the literature, the proposed circuits demonstrate remarkable simplicity. Additionally, they exhibit wide frequency operability (up to 50 MHz) and successfully pass the non-volatility test. Simulation results conducted using 0.18 μm CMOS technology and a ±0.9 V supply voltage align closely with the theoretical predictions. Furthermore, Monte Carlo simulations and corner analysis are employed to evaluate the circuit's robustness. To validate the feasibility of the proposed solution, experimental tests are performed using commercially available components.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Random Access Scheme for Aggregate Traffic Based on Deep Fusion of Supermartingale and Improved SSA","authors":"H. L. Sun, Z. H. Liao, W. D. Shen","doi":"10.13164/re.2023.0625","DOIUrl":"https://doi.org/10.13164/re.2023.0625","url":null,"abstract":". The network services present diversity as the continuous evolution of communication scenarios, which brings a great challenge to the efficient utilization of resources. The ALOHA access mechanism is considered as an effective solution to deal with multi services for its feature of shared bandwidth. However, the collision problem of ALOHA degrades the quality of service ( QoS ) seriously. The multi packet reception ( MPR ) technology could mitigate collision and improve network performance. Considering ALOHA mechanism with MPR capability, we pro-pose a novel random access scheme for aggregate traffic based on deep fusion of supermartingale and improved sparrow search algorithm ( SSA ) to provide delay QoS guarantee. Firstly, we construct a complicated queuing model with heterogeneous arrivals and ALOHA-type service. Secondly, we derive the tighter delay-violation probability bound relying on supermartingale theory, and the optimization problem is constructed with the goal of minimizing the service rate and the constraint of supermartin-gale bound. Finally, we improve the SSA by combining Circle chaotic map, nonlinear inertia weight and Lévy flight strategy, then the scheme is designed by applying the improved SSA and supermartingale constraint. Simulation results show that the proposed algorithm has faster convergence speed and the scheme is more bandwidth-saving.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138614823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optimization of Bipolar Toeplitz Measurement Matrix Based on Cosine-Exponential Chaotic Map and Improved Abolghasemi Algorithm","authors":"S. Meng, C. Meng, C. Wang, Q. Wang","doi":"10.13164/re.2023.0583","DOIUrl":"https://doi.org/10.13164/re.2023.0583","url":null,"abstract":". In compressive sensing theory, the measurement matrix plays a crucial role in compressive observation of sparse signals. The bipolar Toeplitz measurement matrix constructed based on chaotic map has advantages such as generating fewer free elements and supporting fast algorithms, making it widely used. While optimizing the measurement matrix can effectively improve its compressive sensing reconstruction performance, existing optimization algorithms are not suitable for the bipolar Toeplitz measurement matrix due to its structural and bipolar properties. To address this issue, this paper proposes an optimization method for the bipolar Toeplitz measurement matrix based on cosine-exponential (CE) chaotic map sequences and an improved Abolghasemi algorithm. Using an enhanced CE chaotic map to generate chaotic sequences with greater chaos and randomness, we construct the measurement matrix and optimize it using the structure matrix and the improved Abolghasemi algorithm, which preserves the matrix's bipolarity without altering its structure. We also introduce constraints on the generated sequence values during the optimization process. Through simulation experiments, the effectiveness of our optimization algorithm is verified, as the optimized bipolar Toeplitz measurement matrix significantly reduces reconstruction error and improves reconstruction probability.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138626042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rending Lu, Hayder Natiq, A. M. A. Ali, H. Abdolmohammadi, S. Jafari
{"title":"Synchronization of Dissipative Nose–Hoover Systems: Circuit Implementation","authors":"Rending Lu, Hayder Natiq, A. M. A. Ali, H. Abdolmohammadi, S. Jafari","doi":"10.13164/re.2023.0511","DOIUrl":"https://doi.org/10.13164/re.2023.0511","url":null,"abstract":". The synchronization of dynamical systems has been extensively studied across various scientific disciplines, including secure communication, providing insights into the collective behavior of complex systems. This paper investigated the synchronization of diffusively coupled dissipative Nosé-Hoover (DNH) systems analytically and experimentally. This system exhibits a variety of fascinating dynamical phenomena, including multistable or monostable chaotic solutions and attractive torus. The DNH circuit is implemented in OrCAD–PSpice, focusing on chaotic dynamics. The DNH system is thus said to be diffusively coupled by considering a passive resistor to link the corresponding states of two DNH circuits. The coupling scheme and strength (re-sistor value) under which two circuits can be synchronized are attained using the master stability function method and are then confirmed by computing the synchronization error. The correlation of coupled circuits’ outputs (time evolutions) demonstrates complete synchronization, which is consistent with the analytical and experimental results.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":1.1,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138622305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}