基于知识蒸馏的轻量级频谱预测

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
R. Cheng, J. Zhang, J. Deng, Y. Zhu
{"title":"基于知识蒸馏的轻量级频谱预测","authors":"R. Cheng, J. Zhang, J. Deng, Y. Zhu","doi":"10.13164/re.2023.0469","DOIUrl":null,"url":null,"abstract":". To address the challenges of increasing complexity and larger number of training samples required for high-accuracy spectrum prediction, we propose a novel lightweight model, leveraging a temporal convolutional network (TCN) and knowledge distillation. First, the prediction accuracy of TCN is enhanced via a self-transfer method. Then, we design a two-branch network which can extract the spectrum features efficiently. By employing knowledge distillation, we transfer the knowledge from TCN to the two-branch network, resulting in improved accuracy for spectrum prediction of the lightweight network. Experimental results show that the proposed model can improve accuracy by 19.5% compared to the widely-used LSTM model with sufficient historical data and reduces 71.1% parameters to be trained. Furthermore, the prediction accuracy is improved by 17.9% compared to Gated Recurrent Units (GRU) in the scenarios with scarce historical data.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight Spectrum Prediction Based on Knowledge Distillation\",\"authors\":\"R. Cheng, J. Zhang, J. Deng, Y. Zhu\",\"doi\":\"10.13164/re.2023.0469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". To address the challenges of increasing complexity and larger number of training samples required for high-accuracy spectrum prediction, we propose a novel lightweight model, leveraging a temporal convolutional network (TCN) and knowledge distillation. First, the prediction accuracy of TCN is enhanced via a self-transfer method. Then, we design a two-branch network which can extract the spectrum features efficiently. By employing knowledge distillation, we transfer the knowledge from TCN to the two-branch network, resulting in improved accuracy for spectrum prediction of the lightweight network. Experimental results show that the proposed model can improve accuracy by 19.5% compared to the widely-used LSTM model with sufficient historical data and reduces 71.1% parameters to be trained. Furthermore, the prediction accuracy is improved by 17.9% compared to Gated Recurrent Units (GRU) in the scenarios with scarce historical data.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2023.0469\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0469","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

. 为了解决高精度频谱预测所需的日益复杂和大量训练样本的挑战,我们提出了一种新的轻量级模型,利用时间卷积网络(TCN)和知识蒸馏。首先,采用自传递方法提高TCN的预测精度。然后,我们设计了一个能有效提取频谱特征的双分支网络。通过知识蒸馏,我们将TCN中的知识转移到双分支网络中,从而提高了轻量级网络的频谱预测精度。实验结果表明,与历史数据充足的LSTM模型相比,该模型的准确率提高了19.5%,所需训练参数减少了71.1%。此外,在历史数据稀缺的情况下,与门控循环单元(GRU)相比,预测精度提高了17.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lightweight Spectrum Prediction Based on Knowledge Distillation
. To address the challenges of increasing complexity and larger number of training samples required for high-accuracy spectrum prediction, we propose a novel lightweight model, leveraging a temporal convolutional network (TCN) and knowledge distillation. First, the prediction accuracy of TCN is enhanced via a self-transfer method. Then, we design a two-branch network which can extract the spectrum features efficiently. By employing knowledge distillation, we transfer the knowledge from TCN to the two-branch network, resulting in improved accuracy for spectrum prediction of the lightweight network. Experimental results show that the proposed model can improve accuracy by 19.5% compared to the widely-used LSTM model with sufficient historical data and reduces 71.1% parameters to be trained. Furthermore, the prediction accuracy is improved by 17.9% compared to Gated Recurrent Units (GRU) in the scenarios with scarce historical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信