Synchronization of Dissipative Nose–Hoover Systems: Circuit Implementation

IF 0.5 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Rending Lu, Hayder Natiq, A. M. A. Ali, H. Abdolmohammadi, S. Jafari
{"title":"Synchronization of Dissipative Nose–Hoover Systems: Circuit Implementation","authors":"Rending Lu, Hayder Natiq, A. M. A. Ali, H. Abdolmohammadi, S. Jafari","doi":"10.13164/re.2023.0511","DOIUrl":null,"url":null,"abstract":". The synchronization of dynamical systems has been extensively studied across various scientific disciplines, including secure communication, providing insights into the collective behavior of complex systems. This paper investigated the synchronization of diffusively coupled dissipative Nosé-Hoover (DNH) systems analytically and experimentally. This system exhibits a variety of fascinating dynamical phenomena, including multistable or monostable chaotic solutions and attractive torus. The DNH circuit is implemented in OrCAD–PSpice, focusing on chaotic dynamics. The DNH system is thus said to be diffusively coupled by considering a passive resistor to link the corresponding states of two DNH circuits. The coupling scheme and strength (re-sistor value) under which two circuits can be synchronized are attained using the master stability function method and are then confirmed by computing the synchronization error. The correlation of coupled circuits’ outputs (time evolutions) demonstrates complete synchronization, which is consistent with the analytical and experimental results.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2023.0511","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

. The synchronization of dynamical systems has been extensively studied across various scientific disciplines, including secure communication, providing insights into the collective behavior of complex systems. This paper investigated the synchronization of diffusively coupled dissipative Nosé-Hoover (DNH) systems analytically and experimentally. This system exhibits a variety of fascinating dynamical phenomena, including multistable or monostable chaotic solutions and attractive torus. The DNH circuit is implemented in OrCAD–PSpice, focusing on chaotic dynamics. The DNH system is thus said to be diffusively coupled by considering a passive resistor to link the corresponding states of two DNH circuits. The coupling scheme and strength (re-sistor value) under which two circuits can be synchronized are attained using the master stability function method and are then confirmed by computing the synchronization error. The correlation of coupled circuits’ outputs (time evolutions) demonstrates complete synchronization, which is consistent with the analytical and experimental results.
耗散鼻-悬臂系统的同步:电路实现
. 动力系统的同步已经在各个科学学科中得到了广泛的研究,包括安全通信,为复杂系统的集体行为提供了见解。本文对扩散耦合耗散nos - hoover (DNH)系统的同步进行了分析和实验研究。该系统表现出各种迷人的动力学现象,包括多稳定或单稳定混沌解和吸引环面。DNH电路在OrCAD-PSpice中实现,重点研究混沌动力学。因此,通过考虑一个无源电阻来连接两个DNH电路的相应状态,可以说DNH系统是扩散耦合的。采用主稳定函数法确定了两路可同步的耦合方案和强度(电阻值),并通过计算同步误差进行了验证。耦合电路输出的相关性(时间演化)显示完全同步,这与分析和实验结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Radioengineering
Radioengineering 工程技术-工程:电子与电气
CiteScore
2.00
自引率
9.10%
发文量
0
审稿时长
5.7 months
期刊介绍: Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields. Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering. The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信