Tohoku Mathematical Journal最新文献

筛选
英文 中文
Biconformal equivalence between 3-dimensional Ricci solitons 三维Ricci孤子间的双共形等价
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-06-01 DOI: 10.2748/tmj.20200428
P. Baird, Elsa Ghandour
{"title":"Biconformal equivalence between 3-dimensional Ricci solitons","authors":"P. Baird, Elsa Ghandour","doi":"10.2748/tmj.20200428","DOIUrl":"https://doi.org/10.2748/tmj.20200428","url":null,"abstract":"Biconformal deformations in the presence of a conformal foliation by curves are exploited to study equivalence between 3-dimensional Ricci solitons. We show that a wide class of solitons are biconformally equivalent to the flat metric.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47065741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Non-integrated defect relation for meromorphic maps from Kähler manifolds with hypersurfaces of a projective variety in subgeneral position 亚一般位置上具有射影变化的超曲面的Kähler流形亚纯映射的非积分缺陷关系
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-06-01 DOI: 10.2748/tmj.20200219
S. Quang, Lê Ngọc Quỳnh, N. Nhung
{"title":"Non-integrated defect relation for meromorphic maps from Kähler manifolds with hypersurfaces of a projective variety in subgeneral position","authors":"S. Quang, Lê Ngọc Quỳnh, N. Nhung","doi":"10.2748/tmj.20200219","DOIUrl":"https://doi.org/10.2748/tmj.20200219","url":null,"abstract":"","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86426098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finite multiple zeta values, symmetric multiple zeta values and unified multiple zeta functions 有限多重ζ值、对称多重ζ和统一多重ζ函数
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-06-01 DOI: 10.2748/tmj.20200226
Y. Komori
{"title":"Finite multiple zeta values, symmetric multiple zeta values and unified multiple zeta functions","authors":"Y. Komori","doi":"10.2748/tmj.20200226","DOIUrl":"https://doi.org/10.2748/tmj.20200226","url":null,"abstract":"We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $widehat{mathcal{A}}$-finite multiple zeta values and $widehat{mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42937919","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Singularities of parallels to tangent developable surfaces 切线可展曲面平行线的奇异性
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-05-16 DOI: 10.2748/tmj.20211220
G. Ishikawa
{"title":"Singularities of parallels to tangent developable surfaces","authors":"G. Ishikawa","doi":"10.2748/tmj.20211220","DOIUrl":"https://doi.org/10.2748/tmj.20211220","url":null,"abstract":"It is known that the class of developable surfaces which have zero Gaussian curvature in three dimensional Euclidean space is preserved by the parallel transformations. A tangent developable surface is defined as a ruled developable surface by tangent lines to a space curve and it has singularities at least along the space curve, called the directrix or the the edge of regression. Also the class of tangent developable surfaces are invariant under the parallel deformations. In this paper the notions of tangent developable surfaces and their parallels are naturally generalized for frontal curves in general in Euclidean spaces of arbitrary dimensions. We study singularities appearing on parallels to tangent developable surfaces of frontal curves and give the classification of generic singularities on them for frontal curves in 3 or 4 dimensional Euclidean spaces.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49576341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Symmetries of cross caps 十字帽的对称性
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-05-05 DOI: 10.2748/tmj.20211203
Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada
{"title":"Symmetries of cross caps","authors":"Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada","doi":"10.2748/tmj.20211203","DOIUrl":"https://doi.org/10.2748/tmj.20211203","url":null,"abstract":"It is well-known that cross caps on surfaces in the Euclidean 3-space can be expressed in Bruce-West's normal form, which is a special local coordinate system centered at the singular point. In this paper, we show a certain kind of uniqueness of such a coordinate system. In particular, the functions associated with this coordinate system produce new invariants on cross cap singular points. Using them, we classify the possible symmetries on cross caps.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41849348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stokes matrices for Airy equations 艾里方程的斯托克斯矩阵
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-03-30 DOI: 10.2748/tmj.20210506
A. Hohl, Konstantin Jakob
{"title":"Stokes matrices for Airy equations","authors":"A. Hohl, Konstantin Jakob","doi":"10.2748/tmj.20210506","DOIUrl":"https://doi.org/10.2748/tmj.20210506","url":null,"abstract":"We compute Stokes matrices for generalised Airy equations and prove that they are regular unipotent (up to multiplication with the formal monodromy). This class of differential equations was defined by Katz and includes the classical Airy equation. In addition, it includes differential equations which are not rigid. Our approach is based on the topological computation of Stokes matrices of the enhanced Fourier-Sato transform of a perverse sheaf due to D'Agnolo, Hien, Morando and Sabbah.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41658843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Global existence of small solutions for a quadratic nonlinear fourth-order Schrödinger equation in six space dimensions 六空间维二次非线性四阶Schrödinger方程小解的整体存在性
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-03-01 DOI: 10.2748/TMJ.20191217
K. Aoki
{"title":"Global existence of small solutions for a quadratic nonlinear\u0000 fourth-order Schrödinger equation in six space dimensions","authors":"K. Aoki","doi":"10.2748/TMJ.20191217","DOIUrl":"https://doi.org/10.2748/TMJ.20191217","url":null,"abstract":"","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"73 1","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42408772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Gauss maps of transversally complex submanifolds of a quaternion projective space 四元数投影空间的横复子流形的高斯映射
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-03-01 DOI: 10.2748/TMJ.20191202
K. Tsukada
{"title":"The Gauss maps of transversally complex submanifolds of a\u0000 quaternion projective space","authors":"K. Tsukada","doi":"10.2748/TMJ.20191202","DOIUrl":"https://doi.org/10.2748/TMJ.20191202","url":null,"abstract":"","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48382856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Representation of higher-order dispersive operators via short-time Fourier transform and its application 高阶色散算子的短时傅里叶变换表示及其应用
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-03-01 DOI: 10.2748/TMJ.20191226
Keiichi Kato, Masaharu Kobayashi, S. Ito, Tadashi Takahashi
{"title":"Representation of higher-order dispersive operators via\u0000 short-time Fourier transform and its application","authors":"Keiichi Kato, Masaharu Kobayashi, S. Ito, Tadashi Takahashi","doi":"10.2748/TMJ.20191226","DOIUrl":"https://doi.org/10.2748/TMJ.20191226","url":null,"abstract":"","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48298932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finsler conformal changes preserving the modified Ricci curvature 芬斯勒共形改变保留了修正的里奇曲率
IF 0.5 4区 数学
Tohoku Mathematical Journal Pub Date : 2021-03-01 DOI: 10.2748/TMJ.20191212
Bin Chen, Lili Zhao
{"title":"Finsler conformal changes preserving the modified Ricci\u0000 curvature","authors":"Bin Chen, Lili Zhao","doi":"10.2748/TMJ.20191212","DOIUrl":"https://doi.org/10.2748/TMJ.20191212","url":null,"abstract":"","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.5,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43037757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信