Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada
{"title":"十字帽的对称性","authors":"Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada","doi":"10.2748/tmj.20211203","DOIUrl":null,"url":null,"abstract":"It is well-known that cross caps on surfaces in the Euclidean 3-space can be expressed in Bruce-West's normal form, which is a special local coordinate system centered at the singular point. In this paper, we show a certain kind of uniqueness of such a coordinate system. In particular, the functions associated with this coordinate system produce new invariants on cross cap singular points. Using them, we classify the possible symmetries on cross caps.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetries of cross caps\",\"authors\":\"Atsufumi Honda, K. Naokawa, K. Saji, M. Umehara, Kotaro Yamada\",\"doi\":\"10.2748/tmj.20211203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is well-known that cross caps on surfaces in the Euclidean 3-space can be expressed in Bruce-West's normal form, which is a special local coordinate system centered at the singular point. In this paper, we show a certain kind of uniqueness of such a coordinate system. In particular, the functions associated with this coordinate system produce new invariants on cross cap singular points. Using them, we classify the possible symmetries on cross caps.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20211203\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20211203","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
It is well-known that cross caps on surfaces in the Euclidean 3-space can be expressed in Bruce-West's normal form, which is a special local coordinate system centered at the singular point. In this paper, we show a certain kind of uniqueness of such a coordinate system. In particular, the functions associated with this coordinate system produce new invariants on cross cap singular points. Using them, we classify the possible symmetries on cross caps.