有限多重ζ值、对称多重ζ和统一多重ζ函数

IF 0.4 4区 数学 Q4 MATHEMATICS
Y. Komori
{"title":"有限多重ζ值、对称多重ζ和统一多重ζ函数","authors":"Y. Komori","doi":"10.2748/tmj.20200226","DOIUrl":null,"url":null,"abstract":"We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\\widehat{\\mathcal{A}}$-finite multiple zeta values and $\\widehat{\\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Finite multiple zeta values, symmetric multiple zeta values and unified multiple zeta functions\",\"authors\":\"Y. Komori\",\"doi\":\"10.2748/tmj.20200226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\\\\widehat{\\\\mathcal{A}}$-finite multiple zeta values and $\\\\widehat{\\\\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20200226\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20200226","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

摘要

我们引入了完整的多重zeta函数,它是对称多重zeta值的自然插值。此外,我们进一步推广了这些zeta函数,$\widehat{\mathcal{A}}$-有限多个zeta值和$\widehat{\mathcal{S}}$-对称多个zeta值。我们还证明了Kaneko—Zagier猜想所提出的对应关系在有限多个zeta值和这些多个zeta函数的特殊值的非正整数上成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite multiple zeta values, symmetric multiple zeta values and unified multiple zeta functions
We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\widehat{\mathcal{A}}$-finite multiple zeta values and $\widehat{\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信