{"title":"有限多重ζ值、对称多重ζ和统一多重ζ函数","authors":"Y. Komori","doi":"10.2748/tmj.20200226","DOIUrl":null,"url":null,"abstract":"We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\\widehat{\\mathcal{A}}$-finite multiple zeta values and $\\widehat{\\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Finite multiple zeta values, symmetric multiple zeta values and unified multiple zeta functions\",\"authors\":\"Y. Komori\",\"doi\":\"10.2748/tmj.20200226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\\\\widehat{\\\\mathcal{A}}$-finite multiple zeta values and $\\\\widehat{\\\\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20200226\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20200226","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
We introduce entire multiple zeta functions, which are natural interpolations of symmetric multiple zeta values. Moreover we give further generalizations which interpolate these zeta functions, $\widehat{\mathcal{A}}$-finite multiple zeta values and $\widehat{\mathcal{S}}$-symmetric multiple zeta values. We also show that the correspondence which Kaneko--Zagier conjecture suggests holds on nonpositive integers for finite multiple zeta values and special values of these multiple zeta functions.