艾里方程的斯托克斯矩阵

IF 0.4 4区 数学 Q4 MATHEMATICS
A. Hohl, Konstantin Jakob
{"title":"艾里方程的斯托克斯矩阵","authors":"A. Hohl, Konstantin Jakob","doi":"10.2748/tmj.20210506","DOIUrl":null,"url":null,"abstract":"We compute Stokes matrices for generalised Airy equations and prove that they are regular unipotent (up to multiplication with the formal monodromy). This class of differential equations was defined by Katz and includes the classical Airy equation. In addition, it includes differential equations which are not rigid. Our approach is based on the topological computation of Stokes matrices of the enhanced Fourier-Sato transform of a perverse sheaf due to D'Agnolo, Hien, Morando and Sabbah.","PeriodicalId":54427,"journal":{"name":"Tohoku Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stokes matrices for Airy equations\",\"authors\":\"A. Hohl, Konstantin Jakob\",\"doi\":\"10.2748/tmj.20210506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute Stokes matrices for generalised Airy equations and prove that they are regular unipotent (up to multiplication with the formal monodromy). This class of differential equations was defined by Katz and includes the classical Airy equation. In addition, it includes differential equations which are not rigid. Our approach is based on the topological computation of Stokes matrices of the enhanced Fourier-Sato transform of a perverse sheaf due to D'Agnolo, Hien, Morando and Sabbah.\",\"PeriodicalId\":54427,\"journal\":{\"name\":\"Tohoku Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tohoku Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2748/tmj.20210506\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tohoku Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2748/tmj.20210506","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们计算了广义Airy方程的Stokes矩阵,并证明了它们是正则单势的(直到与形式的单调相乘)。这类微分方程由Katz定义,包括经典的Airy方程。此外,它还包括非刚性的微分方程。我们的方法基于由D’Agnolo、Hien、Morando和Sabbah引起的反常sheaf的增强傅立叶-萨托变换的Stokes矩阵的拓扑计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stokes matrices for Airy equations
We compute Stokes matrices for generalised Airy equations and prove that they are regular unipotent (up to multiplication with the formal monodromy). This class of differential equations was defined by Katz and includes the classical Airy equation. In addition, it includes differential equations which are not rigid. Our approach is based on the topological computation of Stokes matrices of the enhanced Fourier-Sato transform of a perverse sheaf due to D'Agnolo, Hien, Morando and Sabbah.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
22
审稿时长
>12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信