Trends in Immunology最新文献

筛选
英文 中文
Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology. 构建多形核细胞:染色质折叠塑造核形态。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-11-01 Epub Date: 2024-10-21 DOI: 10.1016/j.it.2024.09.012
Cornelis Murre, Indumathi Patta, Shreya Mishra, Ming Hu
{"title":"Constructing polymorphonuclear cells: chromatin folding shapes nuclear morphology.","authors":"Cornelis Murre, Indumathi Patta, Shreya Mishra, Ming Hu","doi":"10.1016/j.it.2024.09.012","DOIUrl":"10.1016/j.it.2024.09.012","url":null,"abstract":"<p><p>Immune cell fate decisions are regulated, at least in part, by nuclear architecture. Here, we outline how nuclear architecture instructs mammalian polymorphonuclear cell differentiation. We discuss how in neutrophils loop extrusion mechanisms regulate the expression of genes involved in phagocytosis and shape nuclear morphology. We propose that diminished loop extrusion programs also orchestrate eosinophil and basophil differentiation. We portray a new model in which competitive physical forces, loop extrusion, and phase separation, instruct mononuclear versus polymorphonuclear cell fate decisions. We posit that loop extrusion programs instruct the spatial organization of cytoplasmic organelles, including neutrophil granules, mitochondria, and endoplasmic reticulum. Finally, we suggest that changing loop extrusion programs might allow the engineering of new nuclear shapes and artificial cytoplasmic architectures.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"851-860"},"PeriodicalIF":13.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142513022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Setting the tone: nociceptors as conductors of immune responses. 定调:作为免疫反应导体的痛觉感受器。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-21 DOI: 10.1016/j.it.2024.08.007
Pavel Hanč, Marie-Angèle Messou, Jainu Ajit, Ulrich H von Andrian
{"title":"Setting the tone: nociceptors as conductors of immune responses.","authors":"Pavel Hanč, Marie-Angèle Messou, Jainu Ajit, Ulrich H von Andrian","doi":"10.1016/j.it.2024.08.007","DOIUrl":"10.1016/j.it.2024.08.007","url":null,"abstract":"<p><p>Nociceptors have emerged as master regulators of immune responses in both homeostatic and pathologic settings; however, their seemingly contradictory effects on the functions of different immune cell subsets have been a source of confusion. Nevertheless, work by many groups in recent years has begun to identify patterns of the modalities and consequences of nociceptor-immune system communication. Here, we review recent findings of how nociceptors affect immunity and propose an integrated concept whereby nociceptors are neither inherently pro- nor anti-inflammatory. Rather, we propose that nociceptors have the role of a rheostat that, in a context-dependent manner, favors tissue homeostasis and fine-tunes immunity by preventing excessive histotoxic inflammation, promoting tissue repair, and potentiating anticipatory and adaptive immune responses.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"783-798"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493364/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COVID-19 thromboinflammation: adding inflammatory fibrin to the puzzle. COVID-19 血栓炎症:炎症纤维蛋白之谜。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-25 DOI: 10.1016/j.it.2024.09.003
Elena Magrini, Cecilia Garlanda
{"title":"COVID-19 thromboinflammation: adding inflammatory fibrin to the puzzle.","authors":"Elena Magrini, Cecilia Garlanda","doi":"10.1016/j.it.2024.09.003","DOIUrl":"10.1016/j.it.2024.09.003","url":null,"abstract":"<p><p>Thromboinflammation is a peculiar and key component of acute COVID-19 pathogenesis, which contributes to long COVID. In a recent study, Ryu et al. demonstrate that the SARS-CoV-2 spike protein interacts with fibrinogen, promoting fibrin polymerization and its inflammatory activity. Targeting the inflammatory fibrin peptide protected mice from spike-dependent fibrin clotting and neuropathology.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"721-723"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disease-associated oligodendroglia: a putative nexus in neurodegeneration. 与疾病相关的少突胶质细胞:神经退行性变的假定联系。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-24 DOI: 10.1016/j.it.2024.08.003
Gonçalo Castelo-Branco, Petra Kukanja, André O Guerreiro-Cacais, Leslie A Rubio Rodríguez-Kirby
{"title":"Disease-associated oligodendroglia: a putative nexus in neurodegeneration.","authors":"Gonçalo Castelo-Branco, Petra Kukanja, André O Guerreiro-Cacais, Leslie A Rubio Rodríguez-Kirby","doi":"10.1016/j.it.2024.08.003","DOIUrl":"10.1016/j.it.2024.08.003","url":null,"abstract":"<p><p>Neural cells in our central nervous system (CNS) have long been thought to be mere targets of neuroinflammatory events in neurodegenerative diseases such as multiple sclerosis (MS) or Alzheimer's disease. While glial populations such as microglia and astrocytes emerged as active responders and modifiers of pathological environments, oligodendroglia and neurons have been associated with altered homeostasis and eventual cell death. The advent of single-cell and spatial omics technologies has demonstrated transitions of CNS-resident glia, including oligodendroglia, into disease-associated (DA) states. Anchored in recent findings of their roles in MS, we propose that DA glia constitute key nexus of disease progression, with DA oligodendroglia contributing to the modulation of neuroinflammation in certain neurodegenerative diseases, constituting novel putative pharmacological targets for such pathologies.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"750-759"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging roles of astrocytes as immune effectors in the central nervous system. 星形胶质细胞作为中枢神经系统免疫效应因子的新作用。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-27 DOI: 10.1016/j.it.2024.08.008
Theodore M Fisher, Shane A Liddelow
{"title":"Emerging roles of astrocytes as immune effectors in the central nervous system.","authors":"Theodore M Fisher, Shane A Liddelow","doi":"10.1016/j.it.2024.08.008","DOIUrl":"10.1016/j.it.2024.08.008","url":null,"abstract":"<p><p>The astrocyte, a major glial cell type in the central nervous system (CNS), is widely regarded as a functionally diverse mediator of homeostasis. During development and throughout adulthood, astrocytes have essential roles, such as providing neuron metabolic support, modulating synaptic function, and maintaining the blood-brain barrier (BBB). Recent evidence continues to underscore their functional heterogeneity and importance for CNS maintenance, as well as how these cells ensure optimal CNS and immune responses to disease, acute trauma, and infection. Advances in our understanding of neuroimmune interactions complement our knowledge of astrocyte functional heterogeneity, where astrocytes are now regarded as key effectors and propagators of immune signaling. This shift in perspective highlights the role of astrocytes not merely as support cells, but as active participants in CNS immune responses.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"824-836"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting peripheral immunity to fight neurodegeneration in the brain. 增强外周免疫力,对抗大脑神经变性。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 DOI: 10.1016/j.it.2024.08.002
Michal Schwartz, Sarah Phoebeluc Colaiuta
{"title":"Boosting peripheral immunity to fight neurodegeneration in the brain.","authors":"Michal Schwartz, Sarah Phoebeluc Colaiuta","doi":"10.1016/j.it.2024.08.002","DOIUrl":"10.1016/j.it.2024.08.002","url":null,"abstract":"<p><p>Reciprocal communication between the brain and the immune system is essential for maintaining lifelong brain function. This interaction is mediated, at least in part, by immune cells recruited from both the circulation and niches at the borders of the brain. Here, we describe how immune exhaustion and senescence, even if not primary causative factors, can accelerate neurodegenerative diseases. We emphasize the role of a compromised peripheral immune system in driving neurodegeneration and discuss strategies for harnessing peripheral immunity to effectively treat neurodegenerative diseases, including the underlying mechanisms and opportunities for clinical translation. Specifically, we highlight the potential of boosting the immune system by blocking inhibitory checkpoint molecules to harness reparative immune cells in helping the brain to fight against neurodegeneration.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"760-767"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APOE4 affects neutrophil-microglia crosstalk in Alzheimer's disease. APOE4 影响阿尔茨海默病中嗜中性粒细胞与小胶质细胞之间的串联。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-24 DOI: 10.1016/j.it.2024.09.002
Eleonora Terrabuio, Gabriela Constantin
{"title":"APOE4 affects neutrophil-microglia crosstalk in Alzheimer's disease.","authors":"Eleonora Terrabuio, Gabriela Constantin","doi":"10.1016/j.it.2024.09.002","DOIUrl":"10.1016/j.it.2024.09.002","url":null,"abstract":"<p><p>Circulating immune cells contribute to the pathogenesis of Alzheimer's disease (AD), but their role is poorly understood. Rosenzweig et al. recently identified a subset of interleukin (IL)-17<sup>+</sup> neutrophils that inhibit neuroprotective microglia in female APOE4 carriers. Blockade of IL-17 signaling or APOE4 deletion in neutrophils restored microglial responses and reduced murine amyloid pathology.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"726-728"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protect, repair, rewire, and defend. 保护、修复、重新接线和防御。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-23 DOI: 10.1016/j.it.2024.09.008
Catarina Sacristán
{"title":"Protect, repair, rewire, and defend.","authors":"Catarina Sacristán","doi":"10.1016/j.it.2024.09.008","DOIUrl":"10.1016/j.it.2024.09.008","url":null,"abstract":"","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"715-717"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mononuclear phagocytes in autoimmune neuroinflammation. 自身免疫性神经炎症中的单核吞噬细胞
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-21 DOI: 10.1016/j.it.2024.08.005
Violetta S Gogoleva, Sarah Mundt, Donatella De Feo, Burkhard Becher
{"title":"Mononuclear phagocytes in autoimmune neuroinflammation.","authors":"Violetta S Gogoleva, Sarah Mundt, Donatella De Feo, Burkhard Becher","doi":"10.1016/j.it.2024.08.005","DOIUrl":"10.1016/j.it.2024.08.005","url":null,"abstract":"<p><p>A healthy mammalian central nervous system (CNS) harbors a diverse population of leukocytes including members of the mononuclear phagocyte system (MPS). Exerting their specific functions, CNS tissue-resident macrophages as well as associated monocytes and dendritic cells (DCs) maintain CNS homeostasis. Under neuroinflammatory conditions, leukocytes from the systemic immune compartment invade the CNS. This review focuses on the newly discovered roles of the MPS in autoimmune neuroinflammation elicited by encephalitogenic T cells. We propose that CNS-associated DCs act as gatekeepers and antigen-presenting cells that guide the adaptive immune response while bone marrow (BM)-derived monocytes contribute to immunopathology and tissue damage. By contrast, CNS-resident macrophages primarily support tissue function and promote the repair and maintenance of CNS functions.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"814-823"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The putative contribution of cellular senescence to driving tauopathies. 细胞衰老对牛磺酸病的推定驱动作用。
IF 13.1 1区 医学
Trends in Immunology Pub Date : 2024-10-01 Epub Date: 2024-09-20 DOI: 10.1016/j.it.2024.08.006
Deniz Karabag, Michael T Heneka, Christina Ising
{"title":"The putative contribution of cellular senescence to driving tauopathies.","authors":"Deniz Karabag, Michael T Heneka, Christina Ising","doi":"10.1016/j.it.2024.08.006","DOIUrl":"10.1016/j.it.2024.08.006","url":null,"abstract":"<p><p>During mammalian aging, senescent cells accumulate in the body. Recent evidence suggests that senescent cells potentially contribute to age-related neurodegenerative diseases in the central nervous system (CNS), including tauopathies such as Alzheimer's disease (AD). Senescent cells undergo irreversible cell cycle arrest and release an inflammatory 'senescence-associated secretory profile' (SASP), which can exert devastating effects on surrounding cells. Senescent markers and SASP factors have been detected in multiple brain cells in tauopathies, including microglia, astrocytes, and perhaps even post-mitotic neurons, possibly contributing to the initiation as well as progression of these diseases. Here, we discuss the implications of presenting a senescent phenotype in tauopathies and highlight a potential role for the NOD-like receptor protein 3 (NLRP3) inflammasome as a newfound mechanism implicated in senescence and SASP formation.</p>","PeriodicalId":54412,"journal":{"name":"Trends in Immunology","volume":" ","pages":"837-848"},"PeriodicalIF":13.1,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142301091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信