Vehicular Communications最新文献

筛选
英文 中文
Conditional privacy-preserving and efficient distributed IoV data sharing scheme based on a hierarchical and zonal blockchain 基于分层分区区块链的条件隐私保护和高效分布式物联网数据共享方案
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-26 DOI: 10.1016/j.vehcom.2024.100832
Ziyu Zhou , Na Wang , Jianwei Liu , Wen Zhou , Junsong Fu , Lunzhi Deng
{"title":"Conditional privacy-preserving and efficient distributed IoV data sharing scheme based on a hierarchical and zonal blockchain","authors":"Ziyu Zhou ,&nbsp;Na Wang ,&nbsp;Jianwei Liu ,&nbsp;Wen Zhou ,&nbsp;Junsong Fu ,&nbsp;Lunzhi Deng","doi":"10.1016/j.vehcom.2024.100832","DOIUrl":"10.1016/j.vehcom.2024.100832","url":null,"abstract":"<div><p>With the prevalence of intelligent driving, the vehicular data corresponding to driving safety and traffic management efficiency is widely applied by the Internet of Vehicles (IoV) applications. Vehicular data is shared frequently in IoV, leading to privacy leakage of the message sender, yet most privacy-preserving measures bring difficulties for receivers to detect malicious messages. To trade-off between privacy and security, conditional privacy-preserving authentication (CPPA) solutions have been proposed. However, CPPA protocols deployed in IoV rely on hardware devices or center servers to manage key generation and updates. This paper proposed a blockchain-based CPPA mechanism for IoV data-sharing to mitigate these challenges. A hierarchical key generation mechanism is presented to protect drivers' privacy and authenticate messages which is suitable for resource-limited IoV nodes. Management nodes can issue temporary pseudo-identity (PID) from their keys for vehicles to interact in their area and trace the malicious behaviors, but know nothing about vehicles' activities outside their administration. A hierarchical and zonal blockchain is presented to realize distributed fine-grained IoV management and enhance efficiency concerning traditional blockchain. Specifically, we propose a cross-domain data-sharing mechanism, which can facilitate efficient communication and a mutual cross-domain chain verification to guarantee the security of each domain blockchain in our IoV system. The security analysis and performance evaluation demonstrate the security as well as computational and storage efficiency of our scheme.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141841759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IDS-DEC: A novel intrusion detection for CAN bus traffic based on deep embedded clustering IDS-DEC:基于深度嵌入式聚类的新型 CAN 总线流量入侵检测器
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-26 DOI: 10.1016/j.vehcom.2024.100830
Jiahao Shi, Zhijun Xie, Li Dong, Xianliang Jiang, Xing Jin
{"title":"IDS-DEC: A novel intrusion detection for CAN bus traffic based on deep embedded clustering","authors":"Jiahao Shi,&nbsp;Zhijun Xie,&nbsp;Li Dong,&nbsp;Xianliang Jiang,&nbsp;Xing Jin","doi":"10.1016/j.vehcom.2024.100830","DOIUrl":"10.1016/j.vehcom.2024.100830","url":null,"abstract":"<div><p>As the automotive industry advances towards greater automation, the proliferation of electronic control units (ECUs) has led to a substantial increase in the connectivity of in-vehicle networks with the external environment. However, the widely used Controller Area Network (CAN), which serves as the standard for in-vehicle networks, lacks robust security features, such as authentication or encrypted information transmission. This poses a significant challenge to the security of these networks. Despite the availability of powerful intrusion detection methods based on machine learning and deep learning, there are notable limitations in terms of stability and accuracy in the absence of a supervised learning process with labeled data. To address this issue, this paper introduces a novel in-vehicle intrusion detection system, termed IDS-DEC. This system combines a spatiotemporal self-coder employing LSTM and CNN (LCAE) with an entropy-based deep embedding clustering. Specifically, our approach involves encoding in-vehicle network traffic into windowed messages using a stream builder, designed to adapt to high-frequency traffic. These messages are then fed into the LCAE to extract a low-dimensional nonlinear spatiotemporal mapping from the initially high-dimensional data. The resulting low-dimensional mapping is subjected to a dual constraint in conjunction with our entropy-based pure deep embedding clustering module. This creates a bidirectional learning objective, addressing the optimization problem and facilitating an end-to-end training pattern for our model to adapt to diverse attack environments. The effectiveness of IDS-DEC is validated using both the benchmark Car Hacking dataset and the Car Hacking-Attack &amp; Defense Challenge dataset. Experimental results demonstrate the model's high detection accuracy across various attacks, stabilizing at approximately 99% accuracy with a 0.5% false alarm rate. The F1 score also stabilizes at around 99%. In comparison with unsupervised methods based on deep stream clustering, LSTM-based self-encoder, and classification-based methods, IDS-DEC exhibits significant improvements across all performance metrics.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141849672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficiency of UAV-assisted cellular networks under jamming scenarios 干扰情况下无人机辅助蜂窝网络的效率
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-26 DOI: 10.1016/j.vehcom.2024.100833
Mohammad Arif, Wooseong Kim
{"title":"Efficiency of UAV-assisted cellular networks under jamming scenarios","authors":"Mohammad Arif,&nbsp;Wooseong Kim","doi":"10.1016/j.vehcom.2024.100833","DOIUrl":"10.1016/j.vehcom.2024.100833","url":null,"abstract":"<div><p>The wireless signal that intentionally disrupts the communication is described as the jamming signal. Clustered jamming is the use of jamming signals of the devices that are clustered in groups, whereas non-clustered jamming refers to the use of the jamming signals of the spatially distributed devices that are un-clustered. The efficiency of the unmanned aerial vehicle (UAV)-assisted cellular networks compromises in the presence of clustered as well as non-clustered jammers. Furthermore, the UAV's antenna 3D beam-width vibrates due to strong atmospheric wind, atmospheric pressure, or mechanical noise influencing UAV-assisted networks' efficiency. Thus, the efficiency characterization of UAV-assisted networks considering jamming and beam-width variations is essential. This paper concentrates on the efficiency of the user equipment's connection with the line-of-sight (LOS) UAV, non-LOS UAV, and cellular base station in terms of association, coverage, and spectrum in the presence of clustered as well as non-clustered jammers and beam-width variations. For a network consisting of jammers and beam-width variations, the analytical expressions are derived to assess the user's association and coverage efficiency. The results show that the network's efficiency decreases drastically with the increasing beam-width variations. Moreover, the non-clustered jamming reduces the efficiency of the networks much more when compared with the clustered jamming. Therefore, to enhance the efficiency of the system; network designers need to consider implementing advanced anti-jamming techniques for a system employing non-clustered jamming and UAV antenna beam-width variations.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ASAP: IEEE 802.11ax-based seamless access point handover for moving vehicles ASAP:基于 IEEE 802.11ax 的移动车辆无缝接入点切换
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-18 DOI: 10.1016/j.vehcom.2024.100828
Pin Lv , Huanhua He , Jia Xu
{"title":"ASAP: IEEE 802.11ax-based seamless access point handover for moving vehicles","authors":"Pin Lv ,&nbsp;Huanhua He ,&nbsp;Jia Xu","doi":"10.1016/j.vehcom.2024.100828","DOIUrl":"10.1016/j.vehcom.2024.100828","url":null,"abstract":"<div><p>The increasing number of connected and automated vehicles has led to a sharp increase in the demand for network access of moving vehicles. Although 5G networks support terminals with high mobility, the traffic load is too heavy to bear if all the vehicles have a large amount of data for transmission. Therefore, IEEE 802.11-based wireless network is a complementary offload solution to provide high-speed network access for vehicles with low cost, easy deployment and high scalability. However, frequent network handover of moving vehicles between multiple roadside access points (APs) results in network performance degradation, which is one of the challenges in vehicular communications. In this paper, we propose a framework (referred to as ASAP) based on the up-to-date IEEE 802.11ax standard to provide moving vehicles with seamless handover between multiple APs. By leveraging the high efficiency (HE) sounding protocol of IEEE 802.11ax, each AP is capable to monitor the current location of moving vehicles in real time. In addition, a mechanism is also proposed for AP uplink/downlink transmissions through collaboration between the APs and the backbone network to achieve seamless handover for moving vehicles. Since ASAP is based on IEEE 802.11ax, the compatible security scheme such as IEEE 802.11i can be applied to ASAP for security enhancement. The proposed solution does not require any modification on the user terminals, making it possible to be implemented in practice. Extensive simulations show that ASAP significantly reduces the network handover delay to microsecond level, and improves network throughput up to 59% compared with the state-of-the-art methods.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141845895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-path serial tasks offloading strategy and dynamic scheduling optimization in vehicular edge computing networks 车载边缘计算网络中的多路径串行任务卸载策略和动态调度优化
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-09 DOI: 10.1016/j.vehcom.2024.100827
Xiangyan Liu , Jianhong Zheng , Yang Li , Meng Zhang , Rui Wang , Yun He
{"title":"Multi-path serial tasks offloading strategy and dynamic scheduling optimization in vehicular edge computing networks","authors":"Xiangyan Liu ,&nbsp;Jianhong Zheng ,&nbsp;Yang Li ,&nbsp;Meng Zhang ,&nbsp;Rui Wang ,&nbsp;Yun He","doi":"10.1016/j.vehcom.2024.100827","DOIUrl":"10.1016/j.vehcom.2024.100827","url":null,"abstract":"<div><p>Vehicular edge computing networks (VECNs) can provide a promising solution to support efficient task execution of vehicles. Consider the channel and access time variations caused by the high mobility of vehicles in a vehicular environment when designing task offloading strategies in VECNs. In this paper, we perform multi-path offloading for a task vehicle with serial tasks based on both dynamic communication distances of vehicle-to-infrastructure (V2I) links, that of vehicle-to-vehicle (V2V) links, and slowly varying large-scale fading information of wireless channels. Considering the task vehicle's low delay requirements, our goal is to minimize the maximum task completion time of the task vehicle. A multi-path dynamic offloading scheme (MPDOS), composed of three parts, is proposed to achieve maximum delay minimization. The maximum processing capability of links between a task vehicle and roadside units (RSUs) is first taken as the objective to find the required communication links, which can decrease the total processing time by increasing transmission rate and execution capacity. Then, a task allocation scheme based on a multi-knapsack algorithm matches tasks and RSUs. Finally, a balancing scheme is leveraged to provide load-balancing computing performance across all computation devices. Numerical results show that our proposed scheme outperforms 30.7% of the RA algorithm, and the task completion rate can reach 99.55%.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141622941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel Q-learning-based secure routing scheme with a robust defensive system against wormhole attacks in flying ad hoc networks 基于 Q-learning 的新型安全路由方案,以及针对飞行 ad hoc 网络中虫洞攻击的稳健防御系统
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-07-03 DOI: 10.1016/j.vehcom.2024.100826
Mehdi Hosseinzadeh , Saqib Ali , Husham Jawad Ahmad , Faisal Alanazi , Mohammad Sadegh Yousefpoor , Efat Yousefpoor , Omed Hassan Ahmed , Amir Masoud Rahmani , Sang-Woong Lee
{"title":"A novel Q-learning-based secure routing scheme with a robust defensive system against wormhole attacks in flying ad hoc networks","authors":"Mehdi Hosseinzadeh ,&nbsp;Saqib Ali ,&nbsp;Husham Jawad Ahmad ,&nbsp;Faisal Alanazi ,&nbsp;Mohammad Sadegh Yousefpoor ,&nbsp;Efat Yousefpoor ,&nbsp;Omed Hassan Ahmed ,&nbsp;Amir Masoud Rahmani ,&nbsp;Sang-Woong Lee","doi":"10.1016/j.vehcom.2024.100826","DOIUrl":"https://doi.org/10.1016/j.vehcom.2024.100826","url":null,"abstract":"<div><p>Nowadays, unmanned aerial vehicles (UAVs) organized in a flying ad hoc network (FANET) can successfully carry out complex missions. Due to the limitations of these networks, including the lack of infrastructure, wireless communication channels, dynamic topology, and unreliable communication between UAVs, cyberattacks, especially wormholes, weaken the performance of routing schemes. Therefore, maintaining communication security and guaranteeing the quality of service (QoS) are very challenging. In this paper, a novel Q-learning-based secure routing scheme (QSR) is presented for FANETs. QSR seeks to provide a robust defensive system against wormhole attacks, especially wormhole through encapsulation and wormhole through packet relay. QSR includes a secure neighbor discovery process and a Q-learning-based secure routing process. Firstly, each UAV gets information about its neighboring UAVs securely. To secure communication in this process, a local monitoring system is designed to counteract the wormhole attack through packet relay. This system checks data packets exchanged between neighboring UAVs and defines three rules according to the behavior of wormholes. In the second process, UAVs perform a distributed Q-learning-based routing process to counteract the wormhole attack through encapsulation. To reward the safest paths, a reward function is introduced based on five factors, the average one-hop delay, hop count, data loss ratio, packet transmission frequency (PTF), and packet reception frequency (PRF). Finally, the NS2 simulator is applied for implementing QSR and executing different scenarios. The evaluation results show that QSR works better than TOPCM, MNRiRIP, and MNDA in terms of accuracy, malicious node detection rate, data delivery ratio, and data loss ratio. However, it has more delay than TOPCM.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594198","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VESecure: Verifiable authentication and efficient key exchange for secure intelligent transport systems deployment VESecure:可验证的身份验证和高效的密钥交换,实现安全的智能传输系统部署
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-06-28 DOI: 10.1016/j.vehcom.2024.100822
Praneetha Surapaneni , Sriramulu Bojjagani , Muhammad Khurram Khan
{"title":"VESecure: Verifiable authentication and efficient key exchange for secure intelligent transport systems deployment","authors":"Praneetha Surapaneni ,&nbsp;Sriramulu Bojjagani ,&nbsp;Muhammad Khurram Khan","doi":"10.1016/j.vehcom.2024.100822","DOIUrl":"https://doi.org/10.1016/j.vehcom.2024.100822","url":null,"abstract":"<div><p>The Intelligent Transportation Systems (ITS) is a leading-edge, developing idea that seeks to revolutionize how people and things move inside and outside cities. Internet of Vehicles (IoV) forms a networked environment that joins infrastructure, pedestrians, fog, cloud, and vehicles to develop ITS. The IoV has the potential to improve transportation systems significantly, but as it is networked and data-driven, it poses several security issues. Numerous solutions to these IoV issues have recently been put forth. However, significant computing overhead and security concerns afflict the majority of them. Moreover, malicious vehicles may be injected into the network to access or use unauthorized services. To improve the security of the IoV network, the Mayfly algorithm is used to optimize the private keys continuously. To address these difficulties, we propose a novel VESecure system that provides secure communication, mutual authentication, and key management between vehicles, roadside units (RSU), and cloud servers. The scheme undergoes extensive scrutiny for security and privacy using the Real-or-Random (ROR) oracle model, Tamarin, and Scyther tools, along with the informal security analysis. An Objective Modular Network Testbed in OMNet++ is used to simulate the scheme. We prove our scheme's efficiency by comparing it with other existing methods regarding communication and computation costs.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141594196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On a security scheme against collusive attacks in vehicular ad hoc networks 关于车载特设网络中对抗串通攻击的安全方案
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-06-26 DOI: 10.1016/j.vehcom.2024.100821
Na Fan , Chase Wu , Slimane Benabdallah , Jialong Li , Yuxin Gao , Qinglong Wang
{"title":"On a security scheme against collusive attacks in vehicular ad hoc networks","authors":"Na Fan ,&nbsp;Chase Wu ,&nbsp;Slimane Benabdallah ,&nbsp;Jialong Li ,&nbsp;Yuxin Gao ,&nbsp;Qinglong Wang","doi":"10.1016/j.vehcom.2024.100821","DOIUrl":"https://doi.org/10.1016/j.vehcom.2024.100821","url":null,"abstract":"<div><p>Vehicular Ad Hoc Networks (VANETs) offer a promising solution to bring drivers comfortable driving experiences and also improve road safety in intelligent transportation systems, but also faces many security issues. Collusive attack is one of the most challenging threats in VANETs because it violates the fundamental assumption made by VANET-based applications that all received information be correct and trustworthy. Collusive attackers can not only generate and send false or forged messages, but also purposely manipulate the reputation value of normal or malicious vehicular nodes. To address these issues, we analyze the behaviors characteristics of collusive attacks and propose a generic, lightweight, and fully distributed detection scheme against collusive attacks in VANETs. This scheme integrates two methods to identify different collusive attacks for fraud reputation and fraud message, respectively, as well as an incentive method to restrain collusive nodes. Simulation-based experiments are conducted and the results illustrate the superiority of the proposed security scheme over state-of-the-art methods.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadcast signcryption scheme with equality test in smart transportation system 智能交通系统中带有平等性测试的广播式签名加密方案
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-06-26 DOI: 10.1016/j.vehcom.2024.100820
Shufen Niu, Runyuan Dong, Wei Liu, Peng Ge, Qi Liu
{"title":"Broadcast signcryption scheme with equality test in smart transportation system","authors":"Shufen Niu,&nbsp;Runyuan Dong,&nbsp;Wei Liu,&nbsp;Peng Ge,&nbsp;Qi Liu","doi":"10.1016/j.vehcom.2024.100820","DOIUrl":"https://doi.org/10.1016/j.vehcom.2024.100820","url":null,"abstract":"<div><p>With the generation of massive traffic information in the smart transportation system, the traffic control center efficiently utilizes broadcast communication to send multiple messages to multiple vehicles. Besides, diversified privacy disclosure and security attack issues also emerged spontaneously. To achieve secure communication between the traffic control center and vehicles in the smart transportation system, we design a broadcast signcryption scheme with equality test in the smart transportation system based on the certificateless cryptosystem and equality test. The scheme realizes message confidentiality and vehicle privacy by using the Lagrange interpolation theorem to encrypt messages and vehicle identities, while also achieving classify ciphertext by using the equality test and facilitate road traffic information management. Through numerical experiment analysis, the proposed work has higher operation efficiency and is more suitable for application in smart transportation systems.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Markov-reward based estimation of the idle-time in vehicular networks to improve multimetric routing protocols 基于马尔可夫奖励的车辆网络空闲时间估计,以改进多参数路由协议
IF 5.8 2区 计算机科学
Vehicular Communications Pub Date : 2024-06-25 DOI: 10.1016/j.vehcom.2024.100823
Isabel V. Martin-Faus , Leticia Lemus Cárdenas , Ahmad Mohamad Mezher , Mónica Aguilar Igartua
{"title":"Markov-reward based estimation of the idle-time in vehicular networks to improve multimetric routing protocols","authors":"Isabel V. Martin-Faus ,&nbsp;Leticia Lemus Cárdenas ,&nbsp;Ahmad Mohamad Mezher ,&nbsp;Mónica Aguilar Igartua","doi":"10.1016/j.vehcom.2024.100823","DOIUrl":"https://doi.org/10.1016/j.vehcom.2024.100823","url":null,"abstract":"<div><p>Analyzing vehicular ad hoc networks (VANETs) poses a considerable challenge due to their constantly changing network topology and scarce network resources. Furthermore, defining suitable routing metrics for adaptive algorithms is a particularly hard task since these adaptive decisions should be taken according to the current conditions of the VANET. The literature contains different approaches aimed at optimizing the usage of wireless network resources. In a previous study, we introduced an analytical model based on a straightforward Markov reward chain (MRC) to capture transient measurements of the idle time of the link formed between two VANET nodes, which we denote as <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span>. This current study focuses on modeling and analyzing the influence of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span> on adaptive decision mechanisms. Leveraging our MRC models, we have derived a concise equation to compute <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span>. This equation provides a quick evaluation of <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span>, facilitating quick adaptive routing decisions that align with the current VANET conditions. We have integrated our <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span> evaluation into multihop routing protocols. We specifically compare performance results of the 3MRP protocol with an enhanced version, I3MRP, which incorporates our <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span> metric. Simulation results demonstrate that integrating <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi><mi>d</mi><mi>l</mi><mi>e</mi></mrow></msub></math></span> as a decision metric in the routing protocol enhances the performance of VANETs in terms of packet losses, packet delay, and throughput. The findings consistently indicate that I3MRP outperforms 3MRP by up to 50% in various scenarios across high, medium, and low vehicular densities.</p></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":null,"pages":null},"PeriodicalIF":5.8,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214209624000986/pdfft?md5=316bc8cce7c744317806874319ecfaac&pid=1-s2.0-S2214209624000986-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141481657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信