Khalid Mahmood , Salman Shamshad , Mohammad Hossein Anisi , Alessandro Brighente , Muhammad Asad Saleem , Ashok Kumar Das
{"title":"一种支持6G的智能无人机网络隐私保护访问控制协议","authors":"Khalid Mahmood , Salman Shamshad , Mohammad Hossein Anisi , Alessandro Brighente , Muhammad Asad Saleem , Ashok Kumar Das","doi":"10.1016/j.vehcom.2025.100937","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their autonomous operation, high mobility, and real-time communication capabilities, 6G-supported Unmanned Aerial Vehicles (6G-UAVs) (i.e., drones) are increasingly being utilized to enhance data collection and management in Intelligent Transportation Systems (ITSs). Despite their manifold benefits, 6G-supported UAV-based ITS (6G-U-ITS) faces unique security challenges beyond conventional cyber and physical threats. These include real-time authentication, impersonation attacks, physical tampering or cloning and protection against identity spoofing in highly dynamic environments. For instance, an attacker may steal a drone and use its identity to send authenticated malicious messages to the ITS, causing road accidents. Therefore, a secure authentication scheme must ensure resilience against UAV identity theft and unauthorized access while maintaining low-latency and computational efficiency to support the stringent real-time security requirements of 6G-U-ITS. Existing authentication schemes are not specifically designed to address these challenges, making it imperative to develop a lightweight and robust authentication mechanism tailored for 6G-U-ITS. Moreover, most of the existing protocols are vulnerable to physical tampering and impersonation attacks and also require high computation overhead. In this paper, to mitigate these limitations and satisfy the aforementioned requirements, we propose a secure access control protocol for 6G-U-ITS. To the best of our knowledge, this is the first security solution in the literature that can achieve security against UAVs physical attacks. Furthermore, we justify the robustness of the designed protocol against potential attacks through detailed formal and informal security assessment. Via testbed experiments, we show that our protocol achieves 20.66% and 22.82% higher efficiency on communication and computation overhead, respectively, compared to other contemporary competing protocols.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"54 ","pages":"Article 100937"},"PeriodicalIF":5.8000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A privacy-preserving access control protocol for 6G supported intelligent UAV networks\",\"authors\":\"Khalid Mahmood , Salman Shamshad , Mohammad Hossein Anisi , Alessandro Brighente , Muhammad Asad Saleem , Ashok Kumar Das\",\"doi\":\"10.1016/j.vehcom.2025.100937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to their autonomous operation, high mobility, and real-time communication capabilities, 6G-supported Unmanned Aerial Vehicles (6G-UAVs) (i.e., drones) are increasingly being utilized to enhance data collection and management in Intelligent Transportation Systems (ITSs). Despite their manifold benefits, 6G-supported UAV-based ITS (6G-U-ITS) faces unique security challenges beyond conventional cyber and physical threats. These include real-time authentication, impersonation attacks, physical tampering or cloning and protection against identity spoofing in highly dynamic environments. For instance, an attacker may steal a drone and use its identity to send authenticated malicious messages to the ITS, causing road accidents. Therefore, a secure authentication scheme must ensure resilience against UAV identity theft and unauthorized access while maintaining low-latency and computational efficiency to support the stringent real-time security requirements of 6G-U-ITS. Existing authentication schemes are not specifically designed to address these challenges, making it imperative to develop a lightweight and robust authentication mechanism tailored for 6G-U-ITS. Moreover, most of the existing protocols are vulnerable to physical tampering and impersonation attacks and also require high computation overhead. In this paper, to mitigate these limitations and satisfy the aforementioned requirements, we propose a secure access control protocol for 6G-U-ITS. To the best of our knowledge, this is the first security solution in the literature that can achieve security against UAVs physical attacks. Furthermore, we justify the robustness of the designed protocol against potential attacks through detailed formal and informal security assessment. Via testbed experiments, we show that our protocol achieves 20.66% and 22.82% higher efficiency on communication and computation overhead, respectively, compared to other contemporary competing protocols.</div></div>\",\"PeriodicalId\":54346,\"journal\":{\"name\":\"Vehicular Communications\",\"volume\":\"54 \",\"pages\":\"Article 100937\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vehicular Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214209625000646\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000646","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
A privacy-preserving access control protocol for 6G supported intelligent UAV networks
Due to their autonomous operation, high mobility, and real-time communication capabilities, 6G-supported Unmanned Aerial Vehicles (6G-UAVs) (i.e., drones) are increasingly being utilized to enhance data collection and management in Intelligent Transportation Systems (ITSs). Despite their manifold benefits, 6G-supported UAV-based ITS (6G-U-ITS) faces unique security challenges beyond conventional cyber and physical threats. These include real-time authentication, impersonation attacks, physical tampering or cloning and protection against identity spoofing in highly dynamic environments. For instance, an attacker may steal a drone and use its identity to send authenticated malicious messages to the ITS, causing road accidents. Therefore, a secure authentication scheme must ensure resilience against UAV identity theft and unauthorized access while maintaining low-latency and computational efficiency to support the stringent real-time security requirements of 6G-U-ITS. Existing authentication schemes are not specifically designed to address these challenges, making it imperative to develop a lightweight and robust authentication mechanism tailored for 6G-U-ITS. Moreover, most of the existing protocols are vulnerable to physical tampering and impersonation attacks and also require high computation overhead. In this paper, to mitigate these limitations and satisfy the aforementioned requirements, we propose a secure access control protocol for 6G-U-ITS. To the best of our knowledge, this is the first security solution in the literature that can achieve security against UAVs physical attacks. Furthermore, we justify the robustness of the designed protocol against potential attacks through detailed formal and informal security assessment. Via testbed experiments, we show that our protocol achieves 20.66% and 22.82% higher efficiency on communication and computation overhead, respectively, compared to other contemporary competing protocols.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.