3D Printing and Additive Manufacturing最新文献

筛选
英文 中文
Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion. 优化激光粉末床熔融技术制造的悬挂结构的表面粗糙度和密度
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0180
Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu
{"title":"Optimization of Surface Roughness and Density of Overhang Structures Fabricated by Laser Powder Bed Fusion.","authors":"Hong-You Lin, Hong-Chuong Tran, Yu-Lung Lo, Trong-Nhan Le, Kuo-Chi Chiu, Yuan-Yao Hsu","doi":"10.1089/3dp.2021.0180","DOIUrl":"10.1089/3dp.2021.0180","url":null,"abstract":"<p><p>Laser powder bed fusion (LPBF) provides a rapid and versatile approach for producing parts with complex geometries. However, many parts with intricate geometries have overhang structures, which are not easily fabricated by using LPBF and are often downgraded by staircase effects, warpage, cracks, and dross formation. Thus, the present study proposes a combined numerical and experimental approach for determining the optimal settings of the laser power and scanning speed that minimize the surface roughness and maximize the density of Inconel 718 LPBF overhang structures. In the proposed approach, the heat transfer simulations are employed to determine the melt pool depth, the melt pool length, and the solid cooling rate within the feasible input space of laser power and scanning speed combinations. Notably, the simulations take account of both the difference in the material properties of the solid and powder materials, respectively, and the variation of the laser absorptivity in the depth direction of the powder layer. The simulation results are then used to train artificial neural networks for predicting the melt pool depth for 3600 combinations of the laser power and scanning speed within the input space. The resulting processing maps are screened in accordance with three quality criteria (namely the melt pool depth, the melt pool length, and the solid cooling rate) to determine the optimal processing region, which improves the surface roughness. The feasibility of the proposed approach is demonstrated by fabricating 10 × 10 and 20 × 20 mm<sup>2</sup> horizontal overhang structures using parameter settings chosen from the optimal processing map. It shows that the optimal processing conditions result in a low surface roughness and a maximum density of 99.78%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"732-748"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process. 通过增材制造工艺制作与温度和湿度无关的银纳米粒子碳复合材料应变传感器
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0032
Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin
{"title":"Fabrication of Temperature- and Humidity-Independent Silver Nanoparticle's Carbon Composite-Based Strain Sensor Through Additive Manufacturing Process.","authors":"Iqbal Nadeem, Sajid Memoon, Rahman Khalid, Amin Qausaria Tahseen, Muhammad Shakeel, Ahmad Salman, Amin Mohsin","doi":"10.1089/3dp.2021.0032","DOIUrl":"10.1089/3dp.2021.0032","url":null,"abstract":"<p><p>A highly sensitive low-cost strain sensor was fabricated in this research study based on microdispensing direct write (MDDW) technique. MDDW is an additive manufacturing approach that involves direct deposition of functional material to the substrate. The devices were printed directly onto a polymeric substrate by optimizing the fabrication parameters. A composite of silver and carbon was used as active sensor material where both materials in the composite have opposite resistance temperature coefficients. The ratio of materials in the composite was selected so that the effect of temperature on the resistance of overall composite was canceled out. This resulted in achieving temperature compensation or inherent independence of the strain sensor resistance on temperature without requiring any additional sensors and components. The sensor was further encapsulated by electrospray deposition, which is also an additive manufacturing approach, to eliminate the effect of humidity as well. Electrical and morphological characterizations were performed to investigate the output response of the sensors and their physical and structural properties. An analog signal conditioning circuit was developed for seamless interfacing of the sensor with any electronic system. The sensor had an excellent gauge factor of 45 and a strain sensitivity of 45 Ω/μɛ that is higher than most of the conventional strain sensors. The sensor's response showed excellent temperature and humidity compensation reducing the relative effect of temperature on the resistance by ∼99.5% and humidity by ∼99.8%.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"674-683"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440668/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties. 纳米铜粉与微米铜粉复合材料的便捷三维打印与性能提升。
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0122
Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang
{"title":"The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties.","authors":"Youzhi Zhou, Huijun He, Jingjie Xu, Minghui Liang, Limin Wang, Ligen Wang, Xu Pan, Qiang Hu, Jingguo Zhang","doi":"10.1089/3dp.2021.0122","DOIUrl":"10.1089/3dp.2021.0122","url":null,"abstract":"<p><p>Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"631-639"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440659/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10433425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers. 优化直接油墨写入工艺参数,实现印刷层的尺寸精度。
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0208
Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang
{"title":"Optimizing Process Parameters of Direct Ink Writing for Dimensional Accuracy of Printed Layers.","authors":"Yongqiang Tu, Javier A Arrieta-Escobar, Alaa Hassan, Uzair Khaleeq Uz Zaman, Ali Siadat, Gongliu Yang","doi":"10.1089/3dp.2021.0208","DOIUrl":"10.1089/3dp.2021.0208","url":null,"abstract":"<p><p>Direct ink writing (DIW) belongs to extrusion-based three-dimensional (3D) printing techniques. The success of DIW process depends on well-printable ink and optimized process parameters. After ink preparation, DIW process parameters considerably affect the parts' dimensional accuracy, and process parameters optimization for dimensional accuracy of printed layers is necessary for quality control of parts in DIW. In this study, DIW process parameters were identified and divided into two categories as the parameters for printing a line and the parameter from lines to a layer. Then, a two-step method was proposed for optimizing process parameters. Step 1 was to optimize process parameters for printing a line. In Step 1, continuity and uniformity of extruded filaments and printed rectangular objects were observed in screening experiments to determine printability windows for each process parameter. Then, interaction effect tests were conducted and degree of freedom for experiments was calculated followed by orthogonal array selection for the Taguchi design. Next, main experiments of line printing based on the Taguchi method were conducted. Signal-to-noise ratio calculations and analysis of variance were performed to find the optimal combination and evaluate the significance, respectively. Step 2 was to optimize the parameter from lines to a layer. In Step 2, the average width of the printed line under optimal condition was first measured. Then, single-factor tests of rectangular object printing were conducted to find the optimal parameter from lines to a layer. After these two steps, confirmation results were conducted to verify the reliability of the proposed method and the method robustness on other shapes and other materials; parameter adaptability in 3D parts printing from printed layers' analyses for the proposed method; and parameter adaptability in constructs fabricated as 100% infill or with porosities.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"816-827"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440672/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions. 辅助工艺对线弧增材制造厚壁沉积微观结构和机械性能的影响
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0142
Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao
{"title":"Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions.","authors":"Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao","doi":"10.1089/3dp.2021.0142","DOIUrl":"10.1089/3dp.2021.0142","url":null,"abstract":"<p><p>Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"776-784"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440653/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10052244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing. 激光束粉末床熔融快速成型技术的多部件构建对温度和残余应力的影响
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0143
Wenyou Zhang, Mingming Tong, Noel M Harrison
{"title":"Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing.","authors":"Wenyou Zhang, Mingming Tong, Noel M Harrison","doi":"10.1089/3dp.2021.0143","DOIUrl":"10.1089/3dp.2021.0143","url":null,"abstract":"<p><p>Laser beam powder bed fusion (PBF-LB) is a leading technique among metal additive manufacturing (AM), and it has a wide range of applications in aerospace and medical devices. Most of the existing PBF-LB process modeling is mainly based on the fabrication of a single part on a large build plate, which is not reflective of the practical multipart PBF-LB manufacturing. The effects of batch size on the thermal and mechanical behavior of additively manufactured parts have not been investigated. In this work, the multipart PBF-LB thermomechanical modeling framework was proposed for the first time. The effects of sample numbers (1, 2, and 4) on temperature and residual stress (RS) of part-scale components were computationally investigated. It is found that RS within the parts decreased with increasing number of components per build. Parts located at the central areas of the build plate had larger RS than at the border. These findings can be beneficial for informing AM designers and operators of the optimum printing setup to minimize RS of metal parts in PBF-LB.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"749-761"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10059364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selective Laser Sintering of Polydimethylsiloxane Composites. 选择性激光烧结聚二甲基硅氧烷复合材料。
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0105
Jinzhi Wang, Shaojie Sun, Xue Li, Guoxia Fei, Zhanhua Wang, Hesheng Xia
{"title":"Selective Laser Sintering of Polydimethylsiloxane Composites.","authors":"Jinzhi Wang, Shaojie Sun, Xue Li, Guoxia Fei, Zhanhua Wang, Hesheng Xia","doi":"10.1089/3dp.2021.0105","DOIUrl":"10.1089/3dp.2021.0105","url":null,"abstract":"<p><p>Conductive silicone elastomer carbon nanotubes (CNTs) composites possess potential applications in a variety of fields, including electronic skin, wearable electronics, and human motion detection. Based on a novel self-made covalent adaptable network (CANs) of polydimethylsiloxane (PDMS) containg dynamic steric-hindrance pyrazole urea bond (PDMS-CANs), CNTs wrapped PDMS-CANs (CNTs@PDMS-CANs) powders were prepared by a liquid phase adsorption and deposition, and were successfully used for selective laser sintering (SLS) three-dimensional printing. SLS-printed PDMS-CANs/CNTs nanocomposites possess high electrical conductivity and low percolation threshold as SLS is one kind of quasi-static processing, which leads to the formation of conductive segregated CNTs network by using the PDMS powders with special CNTs wrapped structure. The introduction of dynamic pyrazole urea bond endows the materials self-healing capability under electrothermal and photothermal stimulus. In addition, due to the resistance difference of the damaged and intact areas, crack diagnosing can be realized by infrared thermograph under electricity. In an application demonstration in strain sensor, the composite exhibits a regular cyclic electrical resistance change at cyclic compression and bending, indicating a relative high reliability.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"684-696"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10061431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wear and Thermal Behavior of TiAlN Thin Films onto Ti6Al4V Alloy Manufactured by Selective Laser Melting Method. 选择性激光熔融法制造的 Ti6Al4V 合金上 TiAlN 薄膜的磨损和热行为。
IF 2.3 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI: 10.1089/3dp.2021.0081
Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız
{"title":"Wear and Thermal Behavior of TiAlN Thin Films onto Ti6Al4V Alloy Manufactured by Selective Laser Melting Method.","authors":"Gürkan Kaya, Tevfik Oğuzhan Ergüder, İlyas Hacısalihoğlu, Emre Mandev, Eyüphan Manay, Fatih Yıldız","doi":"10.1089/3dp.2021.0081","DOIUrl":"10.1089/3dp.2021.0081","url":null,"abstract":"<p><p>In this study, it was targeted to enhance the tribological and thermal properties of Ti6Al4V alloys, which were manufactured with three different build orientations and hatch spacing by using the selective laser melting (SLM) method and a traditional method (casting). In addition, the surfaces of the samples produced by these two methods were coated with the TiAlN thin film by using the cathodic arc physical vapor deposition (CAPVD) method. After the experimental investigations, the lowest wear rate was obtained for the 60-90° sample, and the highest microhardness value was measured as ∼1070 HV<sub>0.1</sub> for the 90-45° sample. It was specified that the wear rate rose as the hatch spacing increased among the same build orientation Ti6Al4V alloys produced by SLM method. According to thermal analysis results, among the same hatch spacing values, it was determined that as the build orientation value increased, the specific heat capacity and thermal conductivity values decreased. Among the coated samples, the highest thermal conductivity and specific heat capacity values were obtained for casting samples as 5.63 (W/m·K) and 560.4 (J/kg·K), respectively.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"650-660"},"PeriodicalIF":2.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10414379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for 3D Printing and Additive Manufacturing 罗莎琳德·富兰克林学会自豪地宣布2022年3D打印和增材制造奖获得者
IF 3.1 4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-07-24 DOI: 10.1089/3dp.2022.29021.rfs2022
I. Mitropoulou
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for 3D Printing and Additive Manufacturing","authors":"I. Mitropoulou","doi":"10.1089/3dp.2022.29021.rfs2022","DOIUrl":"https://doi.org/10.1089/3dp.2022.29021.rfs2022","url":null,"abstract":"","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":" ","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48591490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions 平滑粗糙边缘:评估自动生成的多晶格过渡
4区 工程技术
3D Printing and Additive Manufacturing Pub Date : 2023-06-30 DOI: 10.1089/3dp.2023.0008
Martha Baldwin, Nicholas A. Meisel, Christopher McComb
{"title":"Smoothing the Rough Edges: Evaluating Automatically Generated Multi-Lattice Transitions","authors":"Martha Baldwin, Nicholas A. Meisel, Christopher McComb","doi":"10.1089/3dp.2023.0008","DOIUrl":"https://doi.org/10.1089/3dp.2023.0008","url":null,"abstract":"Additive manufacturing is advantageous for producing lightweight components while addressing complex design requirements. This capability has been bolstered by the introduction of unit lattice cells and the gradation of those cells. In cases where loading varies throughout a part, it may be beneficial to use multiple, distinct lattice cell types, resulting in multi-lattice structures. In such structures, abrupt transitions between unit cell topologies may cause stress concentrations, making the boundary between unit cell types a primary failure point. Thus, these regions require careful design to ensure the overall functionality of the part. Although computational design approaches have been proposed, smooth transition regions are still difficult to achieve, especially between lattices of drastically different topologies. This work demonstrates and assesses a method for using variational autoencoders to automate the creation of transitional lattice cells, examining the factors that contribute to smooth transitions. Through computational experimentation, it was found that the smoothness of transition regions was strongly predicted by how closely the endpoints were in the latent space, whereas the number of transition intervals was not a sole predictor.","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135857664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信