Nano Communication Networks最新文献

筛选
英文 中文
Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime 太赫兹环境下基于石墨烯的MIMO天线频率捷变隔离增强机制
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2023.100436
Naveen Kumar Maurya , Sadhana Kumari , Prakash Pareek , Lokendra Singh
{"title":"Graphene-based frequency agile isolation enhancement mechanism for MIMO antenna in terahertz regime","authors":"Naveen Kumar Maurya ,&nbsp;Sadhana Kumari ,&nbsp;Prakash Pareek ,&nbsp;Lokendra Singh","doi":"10.1016/j.nancom.2023.100436","DOIUrl":"https://doi.org/10.1016/j.nancom.2023.100436","url":null,"abstract":"<div><p><span>This paper presents a graphene-based frequency tunable isolation enhancement mechanism for terahertz<span> (THz) MIMO antenna. The presented simple and compact decoupling method could also be employed for any THz device. An isolation enhancement of about 30.41 dB has been achieved at the frequency of operation. The decoupling structure has the ability to suppress mutual coupling caused by any radiation mode of the MIMO element. The change of 0.2 eV (i.e., from 0.5 to 0.7 eV) in chemical potential (</span></span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span>) provides a frequency tunability of about one THz in the transmission coefficient<span> of the decoupling structure. The proposed decoupling technique is applied to the slot ring-based dual-polarized MIMO/diversity antenna. The diversity antenna provides a bandwidth (BW) of 0.83 THz (5.68–6.51 THz) with isolation of 47.56 dB at resonant frequency (6 THz). The gain and efficiency of the proposed diversity antenna at 6 THz are better than 3.99 dBi and 90.17%, respectively. The envelope correlation coefficient (ECC) calculated from far-field and diversity gain (DG) are 4.818 × 10 </span></span><span><math><msup><mrow></mrow><mrow><mo>−</mo><mn>7</mn></mrow></msup></math></span><span> and 10, respectively. Total active reflection coefficient (TARC) is found to be less than -10 dB for different values of input feeding phase </span><span><math><mi>θ</mi></math></span> and the mean effective gain ratio (<span><math><msub><mrow><mtext>MEG</mtext></mrow><mrow><mi>i</mi></mrow></msub></math></span>/<span><math><msub><mrow><mtext>MEG</mtext></mrow><mrow><mi>j</mi></mrow></msub></math></span>) is close to one, which confirms the antenna’s applicability for diversity application in multipath rich wireless channels.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100436"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
A machine learning-based concentration-encoded molecular communication system 一种基于机器学习的浓度编码分子通信系统
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2022.100433
Su-Jin Kim, Pankaj Singh, Sung-Yoon Jung
{"title":"A machine learning-based concentration-encoded molecular communication system","authors":"Su-Jin Kim,&nbsp;Pankaj Singh,&nbsp;Sung-Yoon Jung","doi":"10.1016/j.nancom.2022.100433","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100433","url":null,"abstract":"<div><p><span>Molecular communication (MC) is a recent novel communication paradigm, which could enable revolutionary applications in the fields of medicine, military, and environment. Inspired by nature, MC uses molecules as information carriers to transmit and receive data. Concentration-encoded molecular communication (CEMC) is an information encoding approach, where the information is encoded in the concentration of the transmitted molecules. In this paper, we propose a machine learning<span> (ML)-based CEMC system<span>. In particular, we propose a modulation scheme named </span></span></span><em>concentration position-shift keying (CPSK)</em>, which encodes information as the position of the transmitted molecular concentration. After passing through a diffusion-based channel, the molecules are captured via a <em>ligand–receptor binding process (LRBP)</em> at the nanoreceiver. Then, a ML-based approach is employed to decode the data bits. From numerical simulations, it has been shown that increasing the transmission time and using 4-ary CPSK would enhance the communication performance of the proposed ML-based CEMC system. In addition, we found that the ML receiver mitigates the bias effect and reduces inter-symbol interference (ISI) of the diffusion-based molecular channel. As a result, the proposed ML-based receiver shows better performance than the conventional maximum-likelihood (MLE) receiver.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100433"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance degradation of terahertz channels in emulated rain 太赫兹信道在模拟降雨中的性能退化
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2022.100431
Peian Li , Jiancheng Wang , Liangbin Zhao , Jianjun Ma , Houjun Sun , Lothar Moeller , John F. Federici
{"title":"Performance degradation of terahertz channels in emulated rain","authors":"Peian Li ,&nbsp;Jiancheng Wang ,&nbsp;Liangbin Zhao ,&nbsp;Jianjun Ma ,&nbsp;Houjun Sun ,&nbsp;Lothar Moeller ,&nbsp;John F. Federici","doi":"10.1016/j.nancom.2022.100431","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100431","url":null,"abstract":"<div><p>The ever-increasing capacity demand (up to Tbps in the foreseeable future) in wireless connectivity can supposed be satisfied by terahertz<span> communications in the band from 100 GHz to 10 THz. This has been studied over short channel distances in laboratories using higher order modulation<span> formats (QPSK, QAM). However, only very few reports on the THz channel performance in outdoor adverse weathers conditions are available due to the involved experimental difficulties. In this article, we report the performance of terahertz channels in emulated rain by utilizing a broadband pulse source and a 16-QAM modulated data stream. We observe that, a not precisely known of raindrop size distribution can be a major source of uncertainty for theoretical precipitation of power attenuation and bit error rate (BER). We also find that the channel degradation in rain is mainly due to power attenuation.</span></span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100431"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A novel QCA circuit-switched network with power dissipation analysis for nano communication applications 一种用于纳米通信应用的具有功耗分析的新型QCA电路交换网络
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2023.100438
Mohsen Vahabi , Ehsan Rahimi , Pavel Lyakhov , Akira Otsuki
{"title":"A novel QCA circuit-switched network with power dissipation analysis for nano communication applications","authors":"Mohsen Vahabi ,&nbsp;Ehsan Rahimi ,&nbsp;Pavel Lyakhov ,&nbsp;Akira Otsuki","doi":"10.1016/j.nancom.2023.100438","DOIUrl":"https://doi.org/10.1016/j.nancom.2023.100438","url":null,"abstract":"<div><p>Today, communication links and networks are essential in transmitting data and information. Moreover, information sharing in communication devices and networks has become necessary, routine, and unavoidable. Consequently, designing and manufacturing high-speed nano-scale devices with ultra-low power consumption is very important. Among the emerging paradigms in nanotechnologies, quantum-dot cellular automata<span> (QCA) is very popular in communication sciences. In the present study, we optimize the design and implementation of a QCA crossbar switch and use it in transmitter and receiver circuits. Subsequently, a circuit-switched network in QCA technology is implemented using these devices. All the designed circuits are coplanar with the minimum number of cells, optimal area and latency, and low power consumptions, which employ standard QCA design rules and show superiority and advantages compared to the previous designs.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100438"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Tree router design using a novel optimal QCA DEMUX 一种新的最优QCA-DEMUX树型路由器设计
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2023.100439
Reza Akbari-Hasanjani, Reza Sabbaghi-Nadooshan
{"title":"Tree router design using a novel optimal QCA DEMUX","authors":"Reza Akbari-Hasanjani,&nbsp;Reza Sabbaghi-Nadooshan","doi":"10.1016/j.nancom.2023.100439","DOIUrl":"https://doi.org/10.1016/j.nancom.2023.100439","url":null,"abstract":"<div><p><span><span>Quantum-dot cellular automata (QCA) is a new technology to replace CMOS technology in </span>digital circuits<span>. This replacement is necessary since further miniaturization of CMOS devices has posed serious challenges. In this paper, an optimized 1:2 demultiplexer (1:2 DEMUX) as a tree network switch is proposed. The tree network is examined, and the switches, which are the main components of the network, are used for routing. The proposed 1:2 DEMUX uses a rotated majority gate (RMG) based on QCA technology. According to the evaluation of the proposed 1:2 DEMUX circuit, 16 QCA cells are used with a total area and latency of 0.</span></span><span><math><mrow><mn>02</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup><span> and 0.25 clock cycles, respectively. A comparison with the best reported similar designs shows 15.78% improvement in the complexity, cell area, and area usage of the proposed 1:2 DEMUX. Another parameter that plays a very important role in QCA circuits is energy consumption, which can be measured with QCAPro software. In the proposed DEMUX circuit, the values of energy dissipation for 0.5, 1, and 1.5 E</span><span><math><msub><mrow></mrow><mrow><mi>k</mi></mrow></msub></math></span> are 16.75, 24.84, and 34.6 meV respectively. The proposed router is the first of its kind that uses QCA-based DEMUX. This router has 146 cells, and its total area and latency are equal to 0.<span><math><mrow><mn>25</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span><sup>2</sup> and 0.75 clock cycles, respectively.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100439"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compact tunable terahertz self-diplexing antenna with high isolation 高隔离度紧凑型可调谐太赫兹自双工天线
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-03-01 DOI: 10.1016/j.nancom.2022.100432
Mohd Farman Ali, Aarika Srivastava, Shreya Vijayvargiya, Gaurav Varshney
{"title":"Compact tunable terahertz self-diplexing antenna with high isolation","authors":"Mohd Farman Ali,&nbsp;Aarika Srivastava,&nbsp;Shreya Vijayvargiya,&nbsp;Gaurav Varshney","doi":"10.1016/j.nancom.2022.100432","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100432","url":null,"abstract":"<div><p><span><span>A tunable terahertz (THz) slotted </span>monopole antenna is implemented with self-diplexing capability. The radiating arms of antenna are filled with the graphene strips. The variation in electrical parameters of graphene alters the surface current distribution in the radiating arms which results in tuning the antenna response through individual input ports. Antenna operates in frequency range 4.75–5.34 </span><span><math><mrow><mi>T</mi><mi>H</mi><mi>z</mi></mrow></math></span> and 5.57–6.76<!--> <span><math><mrow><mi>T</mi><mi>H</mi><mi>z</mi></mrow></math></span><span><span> with the application of input at port-1 and 2, respectively which can further be tuned with the reported biasing schemes. The antenna structure utilizes the orthogonal radiating slots which provides high isolation more than 150 dB between the ports in compact antenna geometry. An electrical equivalent circuit is prepared to verify the antenna operation. In addition, antenna offers the peak gain 3.83 dBi at port-1 and 6.06 dBi at port-2 in the operating </span>passband along with the efficiency of more than 80%. Antenna provides the compact geometry with tunable self-diplexing capability and can be suitable for future wireless applications requiring the simultaneous transmit and receive systems.</span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"35 ","pages":"Article 100432"},"PeriodicalIF":2.9,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50203861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Microfluidic Pulse Shaping Methods for Molecular Communications 分子通信的微流控脉冲整形方法
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2023-01-13 DOI: 10.48550/arXiv.2301.05576
Maryam Kahvazi Zadeh, Iman Mokari Bolhassan, M. Kuscu
{"title":"Microfluidic Pulse Shaping Methods for Molecular Communications","authors":"Maryam Kahvazi Zadeh, Iman Mokari Bolhassan, M. Kuscu","doi":"10.48550/arXiv.2301.05576","DOIUrl":"https://doi.org/10.48550/arXiv.2301.05576","url":null,"abstract":"Molecular Communication (MC) is a bio-inspired communication modality that utilizes chemical signals in the form of molecules to exchange information between spatially separated entities. Pulse shaping is an important process in all communication systems, as it modifies the waveform of transmitted signals to match the characteristics of the communication channel for reliable and high-speed information transfer. In MC systems, the unconventional architectures of components, such as transmitters and receivers, and the complex, nonlinear, and time-varying nature of MC channels make pulse shaping even more important. While several pulse shaping methods have been theoretically proposed for MC, their practicality and performance are still uncertain. Moreover, the majority of recently proposed experimental MC testbeds that rely on microfluidics technology lack the incorporation of programmable pulse shaping methods, which hinders the accurate evaluation of MC techniques in practical settings. To address the challenges associated with pulse shaping in microfluidic MC systems, we provide a comprehensive overview of practical microfluidic chemical waveform generation techniques that have been experimentally validated and whose architectures can inform the design of pulse shaping methods for microfluidic MC systems and testbeds. These techniques include those based on hydrodynamic and acoustofluidic force fields, as well as electrochemical reactions. We also discuss the fundamental working mechanisms and system architectures of these techniques, and compare their performances in terms of spatiotemporal resolution, selectivity, system complexity, and other performance metrics relevant to MC applications, as well as their feasibility for practical MC applications.","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"46 1","pages":"100453"},"PeriodicalIF":2.9,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89104558","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An efficient and energy-aware design of a novel nano-scale reversible adder using a quantum-based platform 基于量子平台的新型纳米级可逆加法器的高效节能设计
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2022-12-01 DOI: 10.1016/j.nancom.2022.100412
Seyed-Sajad Ahmadpour , Nima Jafari Navimipour , Mohammad Mosleh , Ali Newaz Bahar , Jadav Chandra Das , Debashis De , Senay Yalcin
{"title":"An efficient and energy-aware design of a novel nano-scale reversible adder using a quantum-based platform","authors":"Seyed-Sajad Ahmadpour ,&nbsp;Nima Jafari Navimipour ,&nbsp;Mohammad Mosleh ,&nbsp;Ali Newaz Bahar ,&nbsp;Jadav Chandra Das ,&nbsp;Debashis De ,&nbsp;Senay Yalcin","doi":"10.1016/j.nancom.2022.100412","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100412","url":null,"abstract":"<div><p><span><span>Quantum-dot cellular automata (QCA) is a domain coupling nano-technology that has drawn significant attention for less </span>power consumption<span>, area, and design overhead. It is able to achieve a high speed over the CMOS technology. Recently, the tendency to design reversible circuits has been expanding because of the reduction in </span></span>energy dissipation<span>. Hence, the QCA is a crucial candidate for reversible circuits in nano-technology. On the other hand, the addition operator is also considered one of the primary operations in digital and analog circuits due to its wide applications in digital signal processing<span><span> and computer arithmetic operations. Accordingly, full-adders have become popular and extensively solve </span>mathematical problems<span> more efficiently and faster. They are one of the essential fundamental circuits in most digital processing circuits. Therefore, this article first suggests a novel reversible block called the RF-adder block. Then, an effective reversible adder design is proposed using the recommended reversible RF-adder block. The QCAPro and QCADesigner 2.0.3 tools were employed to assess the effectiveness of the suggested reversible full-adder. The outcomes of energy dissipation for the proposed circuit compared to the best previous structure at three different tunneling energy levels indicate a reduction in the power consumption by 45.55%, 38.82%, and 34.62%, respectively.</span></span></span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100412"},"PeriodicalIF":2.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72078716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Molecular index modulation using convolutional neural networks 使用卷积神经网络的分子指数调制
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2022-12-01 DOI: 10.1016/j.nancom.2022.100420
Ozgur Kara , Gokberk Yaylali , Ali Emre Pusane , Tuna Tugcu
{"title":"Molecular index modulation using convolutional neural networks","authors":"Ozgur Kara ,&nbsp;Gokberk Yaylali ,&nbsp;Ali Emre Pusane ,&nbsp;Tuna Tugcu","doi":"10.1016/j.nancom.2022.100420","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100420","url":null,"abstract":"<div><p><span>As the potential of molecular communication via diffusion (MCvD) systems at nano-scale communication increases, designing molecular schemes robust to the inevitable effects of molecular interference has become of vital importance. There are numerous molecular approaches in literature aiming to mitigate the effects of interference, namely inter-symbol interference. Moreover, for molecular multiple-input–multiple-output systems, interference among antennas, namely inter-link interference, becomes of significance. Inspired by the state-of-the-art performances of machine learning algorithms on making decisions, we propose a novel approach of a </span>convolutional neural network<span> (CNN)-based architecture. The proposed approach is for a uniquely-designed molecular multiple-input–single-output topology in order to alleviate the damaging effects of molecular interference. In this study, we compare the performance of the proposed network with that of an index modulation<span> approach and a symbol-by-symbol maximum likelihood estimation and show that the proposed method yields better performance.</span></span></p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100420"},"PeriodicalIF":2.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72029248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tuning the higher to lower order resonance frequency ratio and implementing the tunable THz MIMO/self-diplexing antenna 调谐高阶到低阶谐振频率比并实现可调谐THz-MIMO/自双工天线
IF 2.9 4区 计算机科学
Nano Communication Networks Pub Date : 2022-12-01 DOI: 10.1016/j.nancom.2022.100419
Durgesh Kumar, Vivek Kumar, Yadav Anand Subhash, Pushpa Giri, Gaurav Varshney
{"title":"Tuning the higher to lower order resonance frequency ratio and implementing the tunable THz MIMO/self-diplexing antenna","authors":"Durgesh Kumar,&nbsp;Vivek Kumar,&nbsp;Yadav Anand Subhash,&nbsp;Pushpa Giri,&nbsp;Gaurav Varshney","doi":"10.1016/j.nancom.2022.100419","DOIUrl":"https://doi.org/10.1016/j.nancom.2022.100419","url":null,"abstract":"<div><p><span>The frequency ratio of higher to lower order mode can be electronically tuned in a terahertz (THz) antenna with metallic radiator using a graphene loop. Antenna is designed with slotted metallic radiator to obtain the dual-band response with fundamental and second order transverse magnetic mode providing the directional and bi-directional radiation pattern in the lower and upper band, respectively. The insertion of graphene loop and varying its chemical potential (</span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) provides two resonances until <span><math><mrow><mn>0</mn><mo>.</mo><mn>4</mn><mspace></mspace><mi>eV</mi></mrow></math></span> and four resonances for further greater values of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span>. The desired impedance matching can be achieved at the frequencies of any two resonances at a time by selecting an appropriate value of </span><span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>. Antenna can operate with higher/lower order mode centred at frequency 3.77/3.02 THz and 4.39/2.86 THz for the values of <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> as 0.9 and <span><math><mrow><mn>0</mn><mo>.</mo><mn>3</mn><mspace></mspace><mi>eV</mi></mrow></math></span> , respectively. The frequency ratio of higher to lower order mode can be tuned within the range of 1.22–1.59 with the variation in <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span><span>. Also, application of graphene loop confines the radiated power in a single direction at the frequency of higher order mode making the radiation pattern consistent. Antenna can be utilized in future THz wireless applications which require the utilization of adjacent channels with different frequencies in communication. Also, a two-port antenna is designed which can offer the tunable multi-input–multi-output (MIMO) and self-diplexing capability with pattern diversity. The MIMO parameters; envelope correlation coefficient (ECC) and diversity gain (DG) is evaluated and their values are found within acceptable limits as ECC</span><span><math><mrow><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>06</mn></mrow></math></span> and DG<span><math><mrow><mo>&gt;</mo><mn>9</mn><mo>.</mo><mn>9</mn></mrow></math></span> in the operating bands.</p></div>","PeriodicalId":54336,"journal":{"name":"Nano Communication Networks","volume":"34 ","pages":"Article 100419"},"PeriodicalIF":2.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72029249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信