Conservation Physiology最新文献

筛选
英文 中文
Acclimation of thermal tolerance in juvenile plants from three biomes is suppressed when extremes co-occur 三种生物群落中幼年植物的热耐受性在极端气候同时出现时受到抑制
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-22 DOI: 10.1093/conphys/coae027
Rosalie J Harris, Philippa R Alvarez, Callum Bryant, Verónica F Briceño, Alicia M Cook, Andrea Leigh, Adrienne B Nicotra
{"title":"Acclimation of thermal tolerance in juvenile plants from three biomes is suppressed when extremes co-occur","authors":"Rosalie J Harris, Philippa R Alvarez, Callum Bryant, Verónica F Briceño, Alicia M Cook, Andrea Leigh, Adrienne B Nicotra","doi":"10.1093/conphys/coae027","DOIUrl":"https://doi.org/10.1093/conphys/coae027","url":null,"abstract":"Given the rising frequency of thermal extremes (heatwaves and cold snaps) due to climate change, comprehending how a plant’s origin affects its thermal tolerance breadth (TTB) becomes vital. We studied juvenile plants from three biomes: temperate coastal rainforest, desert and alpine. In controlled settings, plants underwent hot days and cold nights in a factorial design to examine thermal tolerance acclimation. We assessed thermal thresholds (Tcrit-hot and Tcrit-cold) and TTB. We hypothesized that (i) desert species would show the highest heat tolerance, alpine species the greatest cold tolerance and temperate species intermediate tolerance; (ii) all species would increase heat tolerance after hot days and cold tolerance after cold nights; (iii) combined exposure would broaden TTB more than individual conditions, especially in desert and alpine species. We found that biome responses were minor compared to the responses to the extreme temperature treatments. All plants increased thermal tolerance in response to hot 40°C days (Tcrit-hot increased by ~3.5°C), but there was minimal change in Tcrit-cold in response to the cold −2°C nights. In contrast, when exposed to both hot days and cold nights, on average, plants exhibited an antagonistic response in TTB, where cold tolerance decreased and heat tolerance was reduced, and so we did not see the bi-directional expansion we hypothesized. There was, however, considerable variation among species in these responses. As climate change intensifies, plant communities, especially in transitional seasons, will regularly face such temperature swings. Our results shed light on potential plant responses under these extremes, emphasizing the need for deeper species-specific thermal acclimation insights, ultimately guiding conservation efforts.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"102 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141151771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migratory behaviours are risk-sensitive to physiological state in an elevational migrant. 迁徙行为对高海拔迁徙者的生理状态具有风险敏感性。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-17 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae029
Kristin Denryter, Thomas R Stephenson, Kevin L Monteith
{"title":"Migratory behaviours are risk-sensitive to physiological state in an elevational migrant.","authors":"Kristin Denryter, Thomas R Stephenson, Kevin L Monteith","doi":"10.1093/conphys/coae029","DOIUrl":"10.1093/conphys/coae029","url":null,"abstract":"<p><p>Accretion of body fat by animals is an important physiological adaptation that may underpin seasonal behaviours, especially where it modulates risk associated with a particular behaviour. Using movement data from male Sierra Nevada bighorn sheep (<i>Ovis canadensis sierrae</i>), we tested the hypothesis that migratory behaviours were risk-sensitive to physiological state (indexed by body fat). Sierra bighorn face severe winter conditions at high elevations and higher predation risk at lower elevations. Given that large body fat stores ameliorate starvation risk, we predicted that having small body fat stores would force animals to migrate to lower elevations with more abundant food supplies. We also predicted that body fat stores would influence how far animals migrate, with the skinniest animals migrating the furthest down in elevation (to access the most abundant food supplies at that time of year). Lastly, we predicted that population-level rates of switching between migratory tactics would be inversely related to body fat levels because as body fat levels decrease, animals exhibiting migratory plasticity should modulate their risk of starvation by switching migratory tactics. Consistent with our predictions, probability of migration and elevational distance migrated increased with decreasing body fat, but effects differed amongst metapopulations. Population-level switching rates also were inversely related to population-level measures of body fat prior to migration. Collectively, our findings suggest migration was risk-sensitive to physiological state, and failure to accrete adequate fat may force animals to make trade-offs between starvation and predation risk. In complex seasonal environments, risk-sensitive migration yields a layer of flexibility that should aid long-term persistence of animals that can best modulate their risk by attuning behaviour to physiological state.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae029"},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tolerance threshold of a pelagic species in China to total dissolved gas supersaturation: from the perspective of survival characteristics and swimming ability 中国中上层物种对溶解气体总饱和度的耐受阈值:从生存特征和游动能力的角度
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-17 DOI: 10.1093/conphys/coae023
Hongtao Wang, Yuanming Wang, Kefeng Li, Ruifeng Liang, Weiyang Zhao
{"title":"Tolerance threshold of a pelagic species in China to total dissolved gas supersaturation: from the perspective of survival characteristics and swimming ability","authors":"Hongtao Wang, Yuanming Wang, Kefeng Li, Ruifeng Liang, Weiyang Zhao","doi":"10.1093/conphys/coae023","DOIUrl":"https://doi.org/10.1093/conphys/coae023","url":null,"abstract":"Total dissolved gas (TDG) supersaturation downstream of dams can occur in the Yangtze River basin and is known to cause stress and even death in fish. Consequently, it is important to establish tolerance thresholds of endemic fish to protect local aquatic resources. We conducted experiments to assess survival characteristics and swimming ability of bighead carp, an important commercial fish dwelling in the Yangtze River, to evaluate its tolerance threshold to TDG supersaturation. The typical external symptoms of gas bubble trauma (GBT) were observed and the time when the fish lost equilibrium and died were recorded. The results showed that the mortality occurred when TDG level exceeded 125%, with obvious symptoms such as exophthalmos and bubbles on the head. The interval between loss of equilibrium and mortality decreased with an increase in TDG level. Neither exposure time nor TDG level significantly affected the critical swimming speed (Ucrit) of fish exposed to non-lethal exposure (110%, 120% and 125% TDG) over a 7 day period. Significant reductions in Ucrit were found under 130% and 135% TDG conditions when the exposure lasted 52.0 h and 42.9 h, respectively. The Ucrit also significantly decreased after exposure of 1.6 h under 140% TDG condition. Moreover, after exposure to 140% TDG for 39.2 h, 135% TDG for 56.5 h and 130% TDG for 95.9 h, bighead carp were transferred into air saturated water to recover for 24 h or 48 h; however, swimming performance remained impaired. The results of this study indicate that 125% TDG was the highest TDG level where limited mortality was observed and the swimming ability was not impaired, showing that 125% TDG can be set as the tolerance threshold of this species to guide the operation of dams in the Yangtze River Basin.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"25 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Respiratory acidosis and O2 supply capacity do not affect the acute temperature tolerance of rainbow trout (Oncorhynchus mykiss). 呼吸道酸中毒和氧气供应能力不会影响虹鳟鱼(Oncorhynchus mykiss)的急性温度耐受性。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-16 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae026
Daniel W Montgomery, Jennifer Finlay, Stephen D Simpson, Georg H Engelhard, Silvana N R Birchenough, Rod W Wilson
{"title":"Respiratory acidosis and O<sub><b>2</b></sub> supply capacity do not affect the acute temperature tolerance of rainbow trout (<i>Oncorhynchus mykiss</i>).","authors":"Daniel W Montgomery, Jennifer Finlay, Stephen D Simpson, Georg H Engelhard, Silvana N R Birchenough, Rod W Wilson","doi":"10.1093/conphys/coae026","DOIUrl":"10.1093/conphys/coae026","url":null,"abstract":"<p><p>The mechanisms that determine the temperature tolerances of fish are poorly understood, creating barriers to disentangle how additional environmental challenges-such as CO<sub>2</sub>-induced aquatic acidification and fluctuating oxygen availability-may exacerbate vulnerability to a warming climate and extreme heat events. Here, we explored whether two acute exposures (~0.5 hours or ~72 hours) to increased CO<sub>2</sub> impact acute temperature tolerance limits in a freshwater fish, rainbow trout (<i>Oncorhynchus mykiss</i>). We separated the potential effects of acute high CO<sub>2</sub> exposure on critical thermal maximum (CT<sub>max</sub>), caused via either respiratory acidosis (reduced internal pH) or O<sub>2</sub> supply capacity (aerobic scope), by exposing rainbow trout to ~1 kPa CO<sub>2</sub> (~1% or 10 000 μatm) in combination with normoxia or hyperoxia (~21 or 42 kPa O<sub>2</sub>, respectively). In normoxia, acute exposure to high CO<sub>2</sub> caused a large acidosis in trout (blood pH decreased by 0.43 units), while a combination of hyperoxia and ~1 kPa CO<sub>2</sub> increased the aerobic scope of trout by 28%. Despite large changes in blood pH and aerobic scope between treatments, we observed no impacts on the CT<sub>max</sub> of trout. Our results suggest that the mechanisms that determine the maximum temperature tolerance of trout are independent of blood acid-base balance or the capacity to deliver O<sub>2</sub> to tissues.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae026"},"PeriodicalIF":2.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Physiologically informed organismal climatologies reveal unexpected spatiotemporal trends in temperature. 生理学生物气候学揭示了意想不到的温度时空趋势。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-16 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae025
Aubrey Foulk, Tarik Gouhier, Francis Choi, Jessica L Torossian, Allison Matzelle, David Sittenfeld, Brian Helmuth
{"title":"Physiologically informed organismal climatologies reveal unexpected spatiotemporal trends in temperature.","authors":"Aubrey Foulk, Tarik Gouhier, Francis Choi, Jessica L Torossian, Allison Matzelle, David Sittenfeld, Brian Helmuth","doi":"10.1093/conphys/coae025","DOIUrl":"10.1093/conphys/coae025","url":null,"abstract":"<p><p>Body temperature is universally recognized as a dominant driver of biological performance. Although the critical distinction between the temperature of an organism and its surrounding habitat has long been recognized, it remains common practice to assume that trends in air temperature-collected via remote sensing or weather stations-are diagnostic of trends in animal temperature and thus of spatiotemporal patterns of physiological stress and mortality risk. Here, by analysing long-term trends recorded by biomimetic temperature sensors designed to emulate intertidal mussel temperature across the US Pacific Coast, we show that trends in maximal organismal temperature ('organismal climatologies') during aerial exposure can differ substantially from those exhibited by co-located environmental data products. Specifically, using linear regression to compare maximal organismal and environmental (air temperature) climatologies, we show that not only are the magnitudes of body and air temperature markedly different, as expected, but so are their temporal trends at both local and biogeographic scales, with some sites showing significant decadal-scale increases in organismal temperature despite reductions in air temperature, or vice versa. The idiosyncratic relationship between the spatiotemporal patterns of organismal and air temperatures suggests that environmental climatology cannot be statistically corrected to serve as an accurate proxy for organismal climatology. Finally, using quantile regression, we show that spatiotemporal trends vary across the distribution of organismal temperature, with extremes shifting in different directions and at different rates than average metrics. Overall, our results highlight the importance of quantifying changes in the entire distribution of temperature to better predict biological performance and dispel the notion that raw or 'corrected' environmental (and specially air temperature) climatologies can be used to predict organismal temperature trends. Hence, despite their widespread coverage and availability, the severe limitations of environmental climatologies suggest that their role in conservation and management policy should be carefully considered.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae025"},"PeriodicalIF":2.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109819/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141082958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The OptoReg system: a simple and inexpensive solution for regulating water oxygen. OptoReg 系统:调节水氧的简单而廉价的解决方案。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-11 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae024
Rasmus Ern, Fredrik Jutfelt
{"title":"The OptoReg system: a simple and inexpensive solution for regulating water oxygen.","authors":"Rasmus Ern, Fredrik Jutfelt","doi":"10.1093/conphys/coae024","DOIUrl":"10.1093/conphys/coae024","url":null,"abstract":"<p><p>This paper describes an optocoupler-based regulation apparatus for saturation manipulation of oxygen in water (OptoReg). This system enables control of solenoid valves for oxygen and nitrogen gases using a FireSting-O<sub>2</sub> meter, an optocoupler box and an electronic switch box. The hardware components connect to a computer through Universal Serial Bus (USB) cables. The control software is free and has a graphical user interface, making it easy to use. With the OptoReg system, any lab with a computer running Microsoft Windows operating system and a 4-channel FireSting-O<sub>2</sub> meter can easily and cheaply set up four independently controlled systems for regulating water oxygen levels. Here, we describe how to assemble and run the OptoReg system and present a data set demonstrating the high precision and stability of the OptoReg system during static acclimation experiments and dynamic warming trials.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae024"},"PeriodicalIF":2.7,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11087874/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140913224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Can blubber steroid hormone measurements reveal reproductive state in narwhals? 脂肪类固醇激素测量能否揭示独角鲸的生殖状态?
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-07 DOI: 10.1093/conphys/coae020
Justine M Hudson, James Simonee, Cortney A Watt
{"title":"Can blubber steroid hormone measurements reveal reproductive state in narwhals?","authors":"Justine M Hudson, James Simonee, Cortney A Watt","doi":"10.1093/conphys/coae020","DOIUrl":"https://doi.org/10.1093/conphys/coae020","url":null,"abstract":"Hormone measurements from blubber samples have been used to assess reproduction in cetaceans and are a widely applicable technique, as blubber samples are often collected from necropsied individuals and biopsies are readily collected from live, free-swimming cetaceans. Many studies have assessed reproduction in cetaceans based on blubber hormone concentrations but few have validated their findings with individuals of known reproductive state. The objectives of this study were to use a unique dataset of paired female narwhal (Monodon monoceros) reproductive tracts and blubber samples to: (1) determine narwhal reproductive state based on ovarian analysis; (2) evaluate progesterone, estradiol, testosterone and corticosterone concentrations in paired blubber samples to validate the use of blubber hormone measurements as a technique to assess reproductive state in narwhals; and (3) determine narwhal reproductive rates using reproductive tract and hormone analyses. Female narwhals with complete reproductive tracts or known ages (n = 13) were categorized as: pregnant (fetus or placenta present; n = 5), active (at least one corpus luteum present; n = 2), resting (at least one corpus albicans present; n = 3) or immature (absence of corpora lutea and albicantia or age &amp;lt;8; n = 3), and eight individuals were classified as unknown due to incomplete reproductive tracts. Estradiol, testosterone, and corticosterone concentrations were not useful for assessing reproductive state; however, progesterone concentrations were higher in pregnant narwhals (432.66 ± 182.13 ng/g) than active (1.57 ± 0.42 ng/g), resting (1.52 ± 0.87 ng/g) and immature (1.44 ± 0.71 ng/g) individuals, validating the use of blubber progesterone concentrations in determining pregnancy in narwhals. Using a progesterone threshold for pregnancy, determined in this study, we were able to classify three individuals with incomplete reproductive tracts as pregnant and identify a potential impending pregnancy loss. The results from this study suggest that blubber progesterone concentrations are useful for assessing pregnancy and can help inform reproductive rates of narwhal populations.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"187 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of acclimation temperature and feed restriction on the metabolic performance of green sturgeon 驯化温度和饲料限制对绿鲟新陈代谢性能的影响
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-07 DOI: 10.1093/conphys/coae021
Kenneth W Zillig, Kelly D Hannan, Sarah E Baird, Dennis E Cocherell, Jamilynn B Poletto, Nann A Fangue
{"title":"Effects of acclimation temperature and feed restriction on the metabolic performance of green sturgeon","authors":"Kenneth W Zillig, Kelly D Hannan, Sarah E Baird, Dennis E Cocherell, Jamilynn B Poletto, Nann A Fangue","doi":"10.1093/conphys/coae021","DOIUrl":"https://doi.org/10.1093/conphys/coae021","url":null,"abstract":"Green sturgeon (Acipenser medirostris) are an anadromous threatened species of sturgeon found along the Pacific coast of North America. The southern distinct population segment only spawns in the Sacramento River and is exposed to water temperatures kept artificially cold for the conservation and management of winter-run Chinook salmon (Oncorhynchus tshawytscha). Past research has demonstrated costs of cold-water rearing including reduced growth rates, condition and survivorship of juvenile green sturgeon. Our research investigates how the stressors of water temperature and food limitation influence the metabolic performance of green sturgeon. We reared green sturgeon at two acclimation temperatures (13 and 19°C) and two ration amounts (100% and 40% of optimal feed). We then measured the routine and maximum metabolic rates (RMR and MMR, respectively) of sturgeon acclimated to these rearing conditions across a range of acute temperature exposures (11 to 31°C). Among both temperature acclimation treatments (13 or 19°C), we found that feed restriction reduced RMR across a range of acute temperatures. The influence of feed restriction on RMR and MMR interacted with acclimation temperature. Fish reared at 13°C preserved their MMR and aerobic scope (AS) despite feed restriction, while fish fed reduced rations and acclimated to 19°C showed reduced MMR and AS capacity primarily at temperatures below 16°C. The sympatry of threatened green sturgeon with endangered salmonids produces a conservation conflict, such that cold-water releases for the conservation of at-risk salmonids may constrain the metabolic performance of juvenile green sturgeon. Understanding the impacts of environmental conditions (e.g. temperature, dissolved oxygen) on ecological interactions of green sturgeon will be necessary to determine the influence of salmonid-focused management.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"47 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydric physiology and ecology of a federally endangered desert lizard. 联邦濒危沙漠蜥蜴的水生生理和生态学。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-06 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae019
Savannah J Weaver, Ian J Axsom, Lindsay Peria, Tess McIntyre, Justin Chung, Rory S Telemeco, Michael F Westphal, Emily N Taylor
{"title":"Hydric physiology and ecology of a federally endangered desert lizard.","authors":"Savannah J Weaver, Ian J Axsom, Lindsay Peria, Tess McIntyre, Justin Chung, Rory S Telemeco, Michael F Westphal, Emily N Taylor","doi":"10.1093/conphys/coae019","DOIUrl":"10.1093/conphys/coae019","url":null,"abstract":"<p><p>Animals can respond to extreme climates by behaviourally avoiding it or by physiologically coping with it. We understand behavioural and physiological thermoregulation, but water balance has largely been neglected. Climate change includes both global warming and changes in precipitation regimes, so improving our understanding of organismal water balance is increasingly urgent. We assessed the hydric physiology of US federally endangered blunt-nosed leopard lizards (<i>Gambelia sila</i>) by measuring cutaneous evaporative water loss (CEWL), plasma osmolality and body condition. Measurements were taken throughout their active season, the short period of year when these lizards can be found aboveground. Compared to a more mesic species, <i>G. sila</i> had low CEWL which is potentially desert-adaptive, and high plasma osmolality that could be indicative of dehydration. We hypothesized that throughout the <i>G. sila</i> active season, as their habitat got hotter and drier, <i>G. sila</i> would become more dehydrated and watertight. Instead, CEWL and plasma osmolality showed minimal change for females and non-linear change for males, which we hypothesize is connected to sex-specific reproductive behaviours and changes in food availability. We also measured thermoregulation and microhabitat use, expecting that more dehydrated lizards would have lower body temperature, poorer thermoregulatory accuracy and spend less time aboveground. However, we found no effect of CEWL, plasma osmolality or body condition on these thermal and behavioural metrics. Finally, <i>G. sila</i> spends considerable time belowground in burrows, and burrows may serve not only as essential thermal refugia but also hydric refugia.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae019"},"PeriodicalIF":2.7,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074591/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local adaptation to climate inferred from intraspecific variation in plant functional traits along a latitudinal gradient. 从纬度梯度植物功能特征的种内变异推断当地对气候的适应性。
IF 2.7 3区 环境科学与生态学
Conservation Physiology Pub Date : 2024-05-05 eCollection Date: 2024-01-01 DOI: 10.1093/conphys/coae018
Emily P Tudor, Wolfgang Lewandrowski, Siegfried Krauss, Erik J Veneklaas
{"title":"Local adaptation to climate inferred from intraspecific variation in plant functional traits along a latitudinal gradient.","authors":"Emily P Tudor, Wolfgang Lewandrowski, Siegfried Krauss, Erik J Veneklaas","doi":"10.1093/conphys/coae018","DOIUrl":"10.1093/conphys/coae018","url":null,"abstract":"<p><p>Ascertaining the traits important for acclimation and adaptation is a critical first step to predicting the fate of populations and species facing rapid environmental change. One of the primary challenges in trait-based ecology is understanding the patterns and processes underpinning functional trait variation in plants. Studying intraspecific variation of functional traits across latitudinal gradients offers an excellent <i>in situ</i> approach to assess associations with environmental factors, which naturally covary along these spatial scales such as the local climate and soil profiles. Therefore, we examined how climatic and edaphic conditions varied across a ~160-km latitudinal gradient to understand how these conditions were associated with the physiological performance and morphological expression within five spatially distinct populations spanning the latitudinal distribution of a model species (<i>Stylidium hispidum</i> Lindl.). Northern populations had patterns of trait means reflecting water conservation strategies that included reduced gas exchange, rosette size and floral investment compared to the southern populations. Redundancy analysis, together with variance partitioning, showed that climate factors accounted for a significantly greater portion of the weighted variance in plant trait data (22.1%; adjusted <i>R</i><sup>2</sup> = 0.192) than edaphic factors (9.3%; adjusted <i>R</i><sup>2</sup> = 0.08). Disentangling such independent and interactive abiotic drivers of functional trait variation will deliver key insights into the mechanisms underpinning local adaptation and population-level responses to current and future climates.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae018"},"PeriodicalIF":2.7,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11074481/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信