Zachary J C Tobias, Gareth Miller, Carolyn K Tepolt
{"title":"Variation of thermal tolerance during northward range expansion in the invasive golden star tunicate, <i>Botryllus schlosseri</i>.","authors":"Zachary J C Tobias, Gareth Miller, Carolyn K Tepolt","doi":"10.1093/conphys/coaf018","DOIUrl":null,"url":null,"abstract":"<p><p>Populations within a species can differ with respect to their thermal physiology, with variation often observed across gradients in environmental temperature with latitude or elevation. The tempo at which phenotypic plasticity and/or local adaptation are able to shape variation in thermal tolerance has implications for species persistence in an increasingly volatile climate. Having encountered novel environments during introduction and subsequent range expansion, non-indigenous species present useful case studies for examining thermal tolerance differentiation on contemporary time scales. Here we test for differentiation of heat and cold tolerance among three populations of the invasive golden star tunicate, <i>Botryllus schlosseri</i> (Pallas), spanning a 24.3° latitudinal gradient in the Northeast Pacific. We observed differentiation of post-larval heat tolerance among our sites, with our southern, putatively warm-adapted population exhibiting a significantly higher LT<sub>50</sub> than the two more northern populations. We also found that adult cardiac performance at cold temperatures is progressively greater in colder, higher latitude populations. This pattern may suggest compensatory genetic adaptation to colder environmental temperatures. By examining both heat tolerance and cold performance simultaneously among populations of an invasive ascidian, we document how this marine ectotherm is capable of shifting its physiology to novel environmental conditions over compressed time scales, with implications for the spread of this invasive species and, more broadly, for species' responses to temperature in an era of global change.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf018"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042657/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf018","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
Populations within a species can differ with respect to their thermal physiology, with variation often observed across gradients in environmental temperature with latitude or elevation. The tempo at which phenotypic plasticity and/or local adaptation are able to shape variation in thermal tolerance has implications for species persistence in an increasingly volatile climate. Having encountered novel environments during introduction and subsequent range expansion, non-indigenous species present useful case studies for examining thermal tolerance differentiation on contemporary time scales. Here we test for differentiation of heat and cold tolerance among three populations of the invasive golden star tunicate, Botryllus schlosseri (Pallas), spanning a 24.3° latitudinal gradient in the Northeast Pacific. We observed differentiation of post-larval heat tolerance among our sites, with our southern, putatively warm-adapted population exhibiting a significantly higher LT50 than the two more northern populations. We also found that adult cardiac performance at cold temperatures is progressively greater in colder, higher latitude populations. This pattern may suggest compensatory genetic adaptation to colder environmental temperatures. By examining both heat tolerance and cold performance simultaneously among populations of an invasive ascidian, we document how this marine ectotherm is capable of shifting its physiology to novel environmental conditions over compressed time scales, with implications for the spread of this invasive species and, more broadly, for species' responses to temperature in an era of global change.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.