Jordyn M Boesch, Robin D Gleed, Peter E Buss, Adrian S W Tordiffe, Gareth E Zeiler, Michele A Miller, Francois Viljoen, Brian H Harvey, Stephen A Parry, Leith C R Meyer
{"title":"乙托啡通过布托啡醇减弱的交感神经诱导固定白犀牛的病理生理。","authors":"Jordyn M Boesch, Robin D Gleed, Peter E Buss, Adrian S W Tordiffe, Gareth E Zeiler, Michele A Miller, Francois Viljoen, Brian H Harvey, Stephen A Parry, Leith C R Meyer","doi":"10.1093/conphys/coaf009","DOIUrl":null,"url":null,"abstract":"<p><p>White rhinoceros are a sentinel species for important ecosystems in southern Africa. Their conservation requires active management of their population, which, in turn, requires immobilization of individuals with an ultra-potent opioid such as etorphine. Unfortunately, when immobilized with etorphine, they develop severe hypoxaemia that may contribute to morbidity and mortality. We hypothesized that (i) etorphine causes sympathetic upregulation that is responsible for physiological complications that produce hypoxaemia and (ii) butorphanol, a partial μ opioid agonist, mitigates sympathetic upregulation, thereby improving arterial oxygen content (CaO<sub>2</sub>) and delivery (DO<sub>2</sub>). Six subadult male white rhinoceros were administered two treatments in random order: etorphine-saline (ES) and etorphine-butorphanol (EB). After intramuscular etorphine (~2.6 μg kg<sup>-1</sup>), rhinoceros became recumbent (time 0 min [t0]) and were instrumented. Baseline data were collected at t30, butorphanol (0.026 mg/kg) or 0.9% saline was administered intravenously at t37, and data were collected again at t40 and t50. At baseline, plasma noradrenaline concentration was >40 ng ml<sup>-1</sup>, approximately twice that of non-immobilized rhinoceros (<i>t</i> test, <i>P</i> < 0.05); cardiac output (Qt, by thermodilution) and metabolic rate (VO<sub>2</sub>, by spirometry/indirect calorimetry) were greater than predicted allometrically (<i>t</i> test, <i>P</i> < 0.05), and pulmonary hypertension was present. After butorphanol, noradrenaline concentration remained greater than in non-immobilized rhinoceros; in EB, CaO<sub>2</sub> was greater, while Qt, DO<sub>2</sub>, VO<sub>2</sub>, and pulmonary pressures were less than in ES (linear mixed effect model, all <i>P</i> < 0.05). Increased noradrenaline concentration with increased Qt and hypermetabolism supports etorphine-induced sympathetic upregulation. Butorphanol partly attenuated these effects, increasing CaO<sub>2</sub> but reducing Qt and, thus, DO<sub>2</sub>. Since plasma noradrenaline concentration remained increased after butorphanol administration while Qt, DO<sub>2</sub>, and VO<sub>2</sub> decreased, a pathway independent of plasma noradrenaline concentration might contribute to the cardiopulmonary and hypermetabolic effects of etorphine. Developing treatments to combat this sympathomimesis could reduce capture-related morbidity in white rhinoceros.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf009"},"PeriodicalIF":2.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974248/pdf/","citationCount":"0","resultStr":"{\"title\":\"Etorphine induces pathophysiology in immobilized white rhinoceros through sympathomimesis that is attenuated by butorphanol.\",\"authors\":\"Jordyn M Boesch, Robin D Gleed, Peter E Buss, Adrian S W Tordiffe, Gareth E Zeiler, Michele A Miller, Francois Viljoen, Brian H Harvey, Stephen A Parry, Leith C R Meyer\",\"doi\":\"10.1093/conphys/coaf009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White rhinoceros are a sentinel species for important ecosystems in southern Africa. Their conservation requires active management of their population, which, in turn, requires immobilization of individuals with an ultra-potent opioid such as etorphine. Unfortunately, when immobilized with etorphine, they develop severe hypoxaemia that may contribute to morbidity and mortality. We hypothesized that (i) etorphine causes sympathetic upregulation that is responsible for physiological complications that produce hypoxaemia and (ii) butorphanol, a partial μ opioid agonist, mitigates sympathetic upregulation, thereby improving arterial oxygen content (CaO<sub>2</sub>) and delivery (DO<sub>2</sub>). Six subadult male white rhinoceros were administered two treatments in random order: etorphine-saline (ES) and etorphine-butorphanol (EB). After intramuscular etorphine (~2.6 μg kg<sup>-1</sup>), rhinoceros became recumbent (time 0 min [t0]) and were instrumented. Baseline data were collected at t30, butorphanol (0.026 mg/kg) or 0.9% saline was administered intravenously at t37, and data were collected again at t40 and t50. At baseline, plasma noradrenaline concentration was >40 ng ml<sup>-1</sup>, approximately twice that of non-immobilized rhinoceros (<i>t</i> test, <i>P</i> < 0.05); cardiac output (Qt, by thermodilution) and metabolic rate (VO<sub>2</sub>, by spirometry/indirect calorimetry) were greater than predicted allometrically (<i>t</i> test, <i>P</i> < 0.05), and pulmonary hypertension was present. After butorphanol, noradrenaline concentration remained greater than in non-immobilized rhinoceros; in EB, CaO<sub>2</sub> was greater, while Qt, DO<sub>2</sub>, VO<sub>2</sub>, and pulmonary pressures were less than in ES (linear mixed effect model, all <i>P</i> < 0.05). Increased noradrenaline concentration with increased Qt and hypermetabolism supports etorphine-induced sympathetic upregulation. Butorphanol partly attenuated these effects, increasing CaO<sub>2</sub> but reducing Qt and, thus, DO<sub>2</sub>. Since plasma noradrenaline concentration remained increased after butorphanol administration while Qt, DO<sub>2</sub>, and VO<sub>2</sub> decreased, a pathway independent of plasma noradrenaline concentration might contribute to the cardiopulmonary and hypermetabolic effects of etorphine. Developing treatments to combat this sympathomimesis could reduce capture-related morbidity in white rhinoceros.</p>\",\"PeriodicalId\":54331,\"journal\":{\"name\":\"Conservation Physiology\",\"volume\":\"13 1\",\"pages\":\"coaf009\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974248/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conservation Physiology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/conphys/coaf009\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf009","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Etorphine induces pathophysiology in immobilized white rhinoceros through sympathomimesis that is attenuated by butorphanol.
White rhinoceros are a sentinel species for important ecosystems in southern Africa. Their conservation requires active management of their population, which, in turn, requires immobilization of individuals with an ultra-potent opioid such as etorphine. Unfortunately, when immobilized with etorphine, they develop severe hypoxaemia that may contribute to morbidity and mortality. We hypothesized that (i) etorphine causes sympathetic upregulation that is responsible for physiological complications that produce hypoxaemia and (ii) butorphanol, a partial μ opioid agonist, mitigates sympathetic upregulation, thereby improving arterial oxygen content (CaO2) and delivery (DO2). Six subadult male white rhinoceros were administered two treatments in random order: etorphine-saline (ES) and etorphine-butorphanol (EB). After intramuscular etorphine (~2.6 μg kg-1), rhinoceros became recumbent (time 0 min [t0]) and were instrumented. Baseline data were collected at t30, butorphanol (0.026 mg/kg) or 0.9% saline was administered intravenously at t37, and data were collected again at t40 and t50. At baseline, plasma noradrenaline concentration was >40 ng ml-1, approximately twice that of non-immobilized rhinoceros (t test, P < 0.05); cardiac output (Qt, by thermodilution) and metabolic rate (VO2, by spirometry/indirect calorimetry) were greater than predicted allometrically (t test, P < 0.05), and pulmonary hypertension was present. After butorphanol, noradrenaline concentration remained greater than in non-immobilized rhinoceros; in EB, CaO2 was greater, while Qt, DO2, VO2, and pulmonary pressures were less than in ES (linear mixed effect model, all P < 0.05). Increased noradrenaline concentration with increased Qt and hypermetabolism supports etorphine-induced sympathetic upregulation. Butorphanol partly attenuated these effects, increasing CaO2 but reducing Qt and, thus, DO2. Since plasma noradrenaline concentration remained increased after butorphanol administration while Qt, DO2, and VO2 decreased, a pathway independent of plasma noradrenaline concentration might contribute to the cardiopulmonary and hypermetabolic effects of etorphine. Developing treatments to combat this sympathomimesis could reduce capture-related morbidity in white rhinoceros.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.