Conservation PhysiologyPub Date : 2024-09-20eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae064
Nicole I Stacy, Rachel Smith, Kathleen E Sullivan, Steven E Nelson, Elizabeth C Nolan, Ryan S De Voe, Blair E Witherington, Justin R Perrault
{"title":"Health assessment of nesting loggerhead sea turtles (<i>Caretta caretta</i>) in one of their largest rookeries (central eastern Florida coast, USA).","authors":"Nicole I Stacy, Rachel Smith, Kathleen E Sullivan, Steven E Nelson, Elizabeth C Nolan, Ryan S De Voe, Blair E Witherington, Justin R Perrault","doi":"10.1093/conphys/coae064","DOIUrl":"10.1093/conphys/coae064","url":null,"abstract":"<p><p>Reproduction is a physiologically demanding process for sea turtles. Health indicators, including morphometric indices and blood analytes, provide insight into overall health, physiology and organ function for breeding sea turtles as a way to assess population-level effects. The Archie Carr National Wildlife Refuge (ACNWR) on Florida's central eastern coast is critical nesting habitat for loggerhead sea turtles (<i>Caretta caretta</i>), but health variables from this location have not been documented. Objectives of the study were to (1) assess morphometrics and blood analyte data (including haematology, plasma biochemistry, protein electrophoresis, β-hydroxybutyrate, trace nutrients, vitamins and fatty acid profiles) from loggerheads nesting on or near the beaches of the ACNWR, (2) investigate correlations of body condition index (BCI) with blood analytes and (3) analyse temporal trends in morphometric and blood analyte data throughout the nesting season. Morphometric and/or blood analyte data are reported for 57 nesting loggerheads encountered between 2016 and 2019. Plasma copper and iron positively correlated with BCI. Mass tended to decline across nesting season, whereas BCI did not. Many blood analytes significantly increased or decreased across nesting season, reflecting the catabolic state and haemodynamic variations of nesting turtles. Twenty-three of 34 fatty acids declined across nesting season, which demonstrates the physiological demands of nesting turtles for vitellogenesis and reproductive activities, thus suggesting potential utility of fatty acids for the assessment of foraging status and phases of reproduction. The findings herein are relevant for future spatiotemporal and interspecies comparisons, investigating stressor effects and understanding the physiological demands in nesting sea turtles. This information provides comparative data for individual animals in rescue or managed care settings and for assessment of conservation strategies.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae064"},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11415931/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-09-19eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae065
Christina O'Toole, Philip White, Conor T Graham, Caitlin Conroy, Deirdre Brophy
{"title":"Cortisol in fish scales remains stable during extended periods of storage.","authors":"Christina O'Toole, Philip White, Conor T Graham, Caitlin Conroy, Deirdre Brophy","doi":"10.1093/conphys/coae065","DOIUrl":"10.1093/conphys/coae065","url":null,"abstract":"<p><p>Measurement of cortisol in fish scales is attracting considerable attention as a non-invasive indicator of chronic stress in wild populations. For many fish species of management and conservation interest, extensive scale collections exist that could provide extended records of individual stress responses, by combining cortisol measurements with life history information. However, it is not yet known how well cortisol is preserved in the scale during storage. To investigate the stability of scale cortisol, we accelerated potential degradation by storing scales from an individual farmed Atlantic salmon (<i>Salmo salar</i>) in an oven at 50°C for between 2 and 12 weeks. We found no significant relationship between scale cortisol concentration and either storage time or storage temperature. Cortisol concentrations in scales from the same fish were consistent (18.54-21.82 ng. g<sup>-1</sup>; coefficient of variation (CV) = 3.6%), indicating that scale cortisol can be reliably quantified, even in scales stored for varying periods of time or under different conditions. We also examined the effects of storage in real time using Atlantic salmon scales that were stored in paper envelopes at room temperature for between 3 and 32 years and found no significant relationship between scale cortisol concentration and storage time. Scale cortisol concentrations ranged from 4.05 to 135.37 ng.g<sup>-1</sup> and levels of between-individual variability were high (CV = 61%). Given that scale cortisol does not degrade during long-term storage, historical scale collections and associated data describing fish life histories could potentially be used to develop bioindicators of physiological responses in fish populations. Further research is needed to understand scale cortisol variability and its biological relevance.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae065"},"PeriodicalIF":2.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11413646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142300903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An evolving roadmap: using mitochondrial physiology to help guide conservation efforts.","authors":"Elisa Thoral,Neal J Dawson,Stefano Bettinazzi,Enrique Rodríguez","doi":"10.1093/conphys/coae063","DOIUrl":"https://doi.org/10.1093/conphys/coae063","url":null,"abstract":"The crucial role of aerobic energy production in sustaining eukaryotic life positions mitochondrial processes as key determinants of an animal's ability to withstand unpredictable environments. The advent of new techniques facilitating the measurement of mitochondrial function offers an increasingly promising tool for conservation approaches. Herein, we synthesize the current knowledge on the links between mitochondrial bioenergetics, ecophysiology and local adaptation, expanding them to the wider conservation physiology field. We discuss recent findings linking cellular bioenergetics to whole-animal fitness, in the current context of climate change. We summarize topics, questions, methods, pitfalls and caveats to help provide a comprehensive roadmap for studying mitochondria from a conservation perspective. Our overall aim is to help guide conservation in natural populations, outlining the methods and techniques that could be most useful to assess mitochondrial function in the field.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"59 1","pages":"coae063"},"PeriodicalIF":2.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas M Sutton,Cory Suski,Keegan Payne,James P O'Dwyer
{"title":"Moving beyond the mean: an analysis of faecal corticosterone metabolites shows substantial variability both within and across white-tailed deer populations.","authors":"Nicholas M Sutton,Cory Suski,Keegan Payne,James P O'Dwyer","doi":"10.1093/conphys/coae062","DOIUrl":"https://doi.org/10.1093/conphys/coae062","url":null,"abstract":"Glucocorticoid (GC) levels have significant impacts on the health and behaviour of wildlife populations and are involved in many essential body functions including circadian rhythm, stress physiology and metabolism. However, studies of GCs in wildlife often focus on estimating mean hormone levels in populations, or a subset of a population, rather than on assessing the entire distribution of hormone levels within populations. Additionally, explorations of population GC data are limited due to the tradeoff between the number of individuals included in studies and the amount of data per individual that can be collected. In this study, we explore patterns of GC level distributions in three white-tailed deer (Odocoileus virginianus) populations using a non-invasive, opportunistic sampling approach. GC levels were assessed by measuring faecal corticosterone metabolite levels ('fCMs') from deer faecal samples throughout the year. We found both population and seasonal differences in fCMs but observed similarly shaped fCM distributions in all populations. Specifically, all population fCM cumulative distributions were found to be very heavy-tailed. We developed two toy models of acute corticosterone elevation in an effort to recreate the observed heavy-tailed distributions. We found that, in all three populations, cumulative fCM distributions were better described by an assumption of large, periodic spikes in corticosterone levels every few days, as opposed to an assumption of random spikes in corticosterone levels. The analyses presented in this study demonstrate the potential for exploring population-level patterns of GC levels from random, opportunistically sampled data. When taken together with individual-focused studies of GC levels, such analyses can improve our understanding of how individual hormone production scales up to population-level patterns.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"410 1","pages":"coae062"},"PeriodicalIF":2.7,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-09-05eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae061
Xueying Wang, Bo Yuan, He Huang, Xiaohui Zhang, Yuliang Liu, Rong Hou, Mingyue Zhang
{"title":"Abnormal expression of natural mating behaviour of captive adult giant pandas is related to physiological stress.","authors":"Xueying Wang, Bo Yuan, He Huang, Xiaohui Zhang, Yuliang Liu, Rong Hou, Mingyue Zhang","doi":"10.1093/conphys/coae061","DOIUrl":"10.1093/conphys/coae061","url":null,"abstract":"<p><p>During <i>ex situ</i> conservation, the adaptability of giant pandas to environmental changes is greatly challenged. The issue of natural reproduction in captive giant pandas remains unresolved both domestically and internationally. It hypothesized that the restricted natural reproductive capacity may be linked to abnormal mating behavior expression due to physiological stress resulting from incompatible pairings in confined environments. To test this hypothesis, we utilized ultra-high performance liquid chromatographytandem quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) to analyse urine metabolites in captive adult giant pandas during their breeding period. Simultaneously, enzyme-linked immunosorbent assay was employed to measure the levels of cortisol and epinephrine in urine, providing insight into the psychological state of captive giant pandas during mate selection by examining all metabolites and related biochemical pathways. This comprehensive approach aims to fully elucidate the physiological mechanisms underlying the decline in natural reproductive capacity. The metabolomics findings indicate that the aberrant expression of natural mating behaviour in captive adult male and female giant pandas may be associated with dysfunction in amino acid metabolic pathways. The activation of these metabolic pathways is linked to psychological stress, such as the tryptophan metabolic pathway and GABAergic synapse pathway. The results of physiological indicators indicate a significant correlation between the expression of natural mating behaviour in captive adult pandas and the hormone urine cortisol, which is associated with physiological stress. These findings indicate that the atypical manifestation of natural mating behaviour in captive adult giant pandas may be associated with physiological stress induced by incompatible pairings within confined environments.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae061"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11377310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-09-05eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae057
Alyssa Eby, Allison Patterson, Shannon Whelan, Kyle H Elliott, H Grant Gilchrist, Oliver P Love
{"title":"Influence of sea ice concentration, sex and chick age on foraging flexibility and success in an Arctic seabird.","authors":"Alyssa Eby, Allison Patterson, Shannon Whelan, Kyle H Elliott, H Grant Gilchrist, Oliver P Love","doi":"10.1093/conphys/coae057","DOIUrl":"10.1093/conphys/coae057","url":null,"abstract":"<p><p>Declining sea ice and increased variability in sea ice dynamics are altering Arctic marine food webs. Changes in sea ice dynamics and prey availability are likely to impact pagophilic (ice-dependent and ice-associated) species, such as thick-billed murres (<i>Uria lomvia</i>), through changes in foraging behaviour and foraging success. At the same time, extrinsic factors, such as chick demand, and intrinsic factors, such as sex, are also likely to influence foraging behaviour and foraging success of adult murres. Here, we use 3 years of data (2017-2019) to examine the impacts of environmental conditions (sea ice concentration and sea surface temperature), sex and chick age (as a proxy for chick demand) on foraging and diving behaviour (measured via biologgers), energy expenditure (estimated from activity budgets) and foraging success (measured via nutritional biomarkers) of thick-billed murres during the incubation and chick-rearing stages at Coats Island, Nunavut. Murres only exhibited foraging flexibility to environmental conditions during incubation, which is also the only stage when ice was present. When more ice was present, foraging effort increased, murres foraged farther and made deeper dives, where murres making deeper dives had higher foraging success (greater relative change in mass). During incubation, murre behaviour was also influenced by sex of the individual, where males made more and shorter trips and more dives. During chick-rearing, murre behaviour was influenced primarily by the sex of the individual and chick age. Males made shallower dives and fewer dive bouts per day, and more dives. Birds made longer, deeper dives as chicks aged, likely representing increased intra-specific competition for prey throughout the season. Our results suggest variation in sea ice concentration does impact foraging success of murres; however, sex-specific foraging strategies may help buffer colony breeding success from variability in sea ice concentration.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae057"},"PeriodicalIF":2.6,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11381092/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shannon J McMahon, Philip L Munday, Jennifer M Donelson
{"title":"The effects of marine heatwaves on a coral reef snapper: insights into aerobic and anaerobic physiology and recovery","authors":"Shannon J McMahon, Philip L Munday, Jennifer M Donelson","doi":"10.1093/conphys/coae060","DOIUrl":"https://doi.org/10.1093/conphys/coae060","url":null,"abstract":"Marine heatwaves (MHWs) are increasing in frequency and intensity. Coral reefs are particularly susceptible to MHWs, which cause mass coral bleaching and mortality. However, little is known about how MHWs affect coral reef fishes. Here, we investigated how MHWs affect the physiology of a coral reef mesopredator, Lutjanus carponotatus. Specifically, we exposed mature adults to two different MHW intensities, +1°C (29.5°C) and + 2°C (30.5°C) and measured physiological performance at 2 and 4 weeks of exposure and at 2 weeks post-exposure. At these time points, we measured oxygen consumption at rest and after a simulated fishing capture event, recovery time, excess post-exercise oxygen consumption (EPOC) and associated biochemical markers in the blood (baseline lactate, post-capture lactate, glucose, haemoglobin levels and haematocrit proportion). We found that 2 weeks of exposure to MHW conditions increased resting oxygen consumption (+1°C = 23%, +2°C = 37%), recovery time (+1°C = 62%, +2°C = 77%), EPOC (+1°C = 50%, +2°C = 68%), baseline lactate (+1°C = 27%, +2°C = 28%), post-capture lactate (+1°C = 62%, +2°C = 109%) and haemoglobin levels (+1°C = 13%, +2°C = 28%). This pattern was maintained at 4 weeks of exposure except for post-capture lactate which was reduced (+1°C = −37%, +2°C = 27%). In combination, these results suggest a greater reliance on anaerobic glycolysis to maintain homeostasis in MHW conditions. At 2 weeks post-exposure, when compared to control fish, we found that capture oxygen consumption was increased (+1°C = 25%, +2°C = 26%), recovery rate was increased (+2°C = 38%) and haemoglobin was still higher (+1°C = 15%, +2°C = 21%). These results show that MHW conditions have direct physiological demands on adult coral reef snapper and ecologically relevant residual effects can last for at least 2 weeks post-MHW; however, individuals appear to recover from the negative effects experienced during the MHW. This provides new insight into the effects of MHWs on the physiological performance of coral reef fishes.","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"6 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-08-21eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae056
Erin M Saylor, Andrew J Kouba, Melanie R Boudreau, Nucharin Songsasen, Carrie K Kouba
{"title":"Efficacy of salmon GnRHa, Ovaprim® and hCG for hormonal stimulation of spermiation in the Fowler's toad (<i>Anaxyrus fowleri</i>).","authors":"Erin M Saylor, Andrew J Kouba, Melanie R Boudreau, Nucharin Songsasen, Carrie K Kouba","doi":"10.1093/conphys/coae056","DOIUrl":"10.1093/conphys/coae056","url":null,"abstract":"<p><p><i>Ex situ</i> amphibian populations can experience reproductive dysfunction due to the absence of environmental cues that trigger reproductive events. Assisted reproductive technologies (ART) for amphibians, specifically exogenous hormone regimens, can circumvent these external signals to induce gametogenesis and gamete release. Currently, the use of the mammalian reproductive hormones gonadotropin-releasing hormone (GnRH) and human chorionic gonadotropin (hCG) are used in a species-specific manner to stimulate amphibian breeding. Hormones or hormone mixtures that are effective in all breeding scenarios would provide the best option for conservation practitioners and some commercial products are already in use for breeding other ectotherms. Ovaprim®, which contains salmon GnRH analogue (sGnRHa) and the dopamine antagonist domperidone (DOM), is effective in fish aquaculture and may be effective for amphibians. To test this hypothesis, we treated Fowler's toads (<i>Anaxyrus fowleri</i>) with either sGnRHa alone, a high or low dose of Ovaprim® or hCG. We then compared spermiation response, sperm quantity and quality parameters, and changes in animal mass over time within each treatment. We found administration of Ovaprim® resulted in more males producing sperm with better motility compared to administration of sGnRHa alone. In addition, the Ovaprim® and sGnRHa treatments resulted in lower response rates, lower sperm motilities, more abnormal sperm, and higher aggregations of sperm compared to the hCG treatment. Furthermore, Ovaprim®-treated males gained significant mass, suggesting an anti-diuretic effect of DOM. Together, these results show that neither Ovaprim® nor sGnRHa, at the concentrations tested, are likely suitable replacements for hCG in <i>ex situ</i> bufonid breeding programmes and that hormone mixtures developed for fish may have limited transferability to new world toad species.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae056"},"PeriodicalIF":2.6,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11337219/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-08-19eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae059
Joanna Kershaw, Christian Ramp, Richard Sears, Ailsa Hall, Davina Derous
{"title":"Proteome profiling reveals opportunities to investigate biomarkers of oxidative stress and immune responses in blubber biopsies from free-ranging baleen whales.","authors":"Joanna Kershaw, Christian Ramp, Richard Sears, Ailsa Hall, Davina Derous","doi":"10.1093/conphys/coae059","DOIUrl":"10.1093/conphys/coae059","url":null,"abstract":"<p><p>Over 25% of cetacean species worldwide are listed as critically endangered, endangered or vulnerable by the International Union for Conservation of Nature. Objective and widely applicable tools to assess cetacean health are therefore vital for population monitoring and to inform conservation initiatives. Novel blubber biomarkers of physiological state are examples of such tools that could be used to assess overall health. Proteins extracted from blubber likely originate from both the circulation and various cell types within the tissue itself, and their expression is responsive to signals originating from other organs and the nervous system. Blubber proteins can therefore capture information on physiological stressors experienced by individuals at the time of sampling. For the first time, we assess the feasibility of applying shotgun proteomics to blubber biopsy samples collected from free-ranging baleen whales. Samples were collected from minke whales (<i>Balaenoptera acutorostrata</i>) (<i>n</i> = 10) in the Gulf of St Lawrence, Canada. Total protein was extracted using a RIPA cell lysis and extraction buffer-based protocol. Extracted proteins were separated and identified using nanoflow Liquid Chromatography Electrospray Ionization in tandem with Mass Spectrometry. We mapped proteins to known biological pathways and determined whether they were significantly enriched based on the proteome profile. A pathway enrichment map was created to visualize overlap in tissue-level biological processes. Amongst the most significantly enriched biological pathways were those involved in immune system function: inflammatory responses, leukocyte-mediated immunity and the humoral immune response. Pathways associated with responses to oxidative stress were also enriched. Using a suite of such protein biomarkers has the potential to better assess the overall health and physiological state of live individuals through remote biopsy sampling. This information is vital for population health assessments to predict population trajectories, and ultimately guide and monitor conservation priorities and initiatives.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae059"},"PeriodicalIF":2.6,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11332026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation PhysiologyPub Date : 2024-08-15eCollection Date: 2024-01-01DOI: 10.1093/conphys/coae055
Ainoa Nieto-Claudín, Jamie L Palmer, Maris Brenn-White, Fernando Esperón, Sharon L Deem
{"title":"Haematology and plasma biochemistry reference intervals of Española, San Cristobal and Eastern Santa Cruz Galapagos tortoise species.","authors":"Ainoa Nieto-Claudín, Jamie L Palmer, Maris Brenn-White, Fernando Esperón, Sharon L Deem","doi":"10.1093/conphys/coae055","DOIUrl":"10.1093/conphys/coae055","url":null,"abstract":"<p><p>Normal reference intervals (RI) of hematologic and biochemical parameters are important for assessing and monitoring the health status of captive and free-living chelonians; however, such information is not available for most wildlife species. Giant Galapagos tortoises are one of the most iconic animals on earth and health information can make an important contribution to their conservation and management. This study provides formal RI of haematology and plasma biochemistry parameters and describes cell morphology along with morphometrics of free-living Eastern Santa Cruz (<i>Chelonoidis donfaustoi</i>), Española (<i>Chelonoidis hoodensis</i>) and San Cristóbal tortoises (<i>Chelonoidis chathamensis</i>). We explored differences in blood parameters between sexes, across the tortoise species in this study and with previously published RI of the Western Santa Cruz tortoise (<i>Chelonoidis porteri</i>). Biochemistry parameters of both Santa Cruz species were overall more similar to each other than to Española and San Cristobal tortoises. This research constitutes the first RI for these three Galapagos tortoise species and may be of value for advising captive-breeding and conservation plans. We recommend further research to establish RI in additional tortoise species so we may better understand and interpret haematology and biochemistry parameters as a valuable conservation tool for species of this critically endangered taxon.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"12 1","pages":"coae055"},"PeriodicalIF":2.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141989524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}