Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco
{"title":"Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations","authors":"Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco","doi":"10.1109/JTEHM.2024.3415412","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3415412","url":null,"abstract":"Objective: This research aims to extract human gait parameters from floor vibrations. The proposed approach provides an innovative methodology on occupant activity, contributing to a broader understanding of how human movements interact within their built environment.Methods and Procedures: A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG) for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model was tested in a real-time implementation where ten individuals were recorded walking at their own selected pace.Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned with the estimations using the APDM sensors and video recordings.Conclusion: This research validates the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations, demonstrating its satisfactory comparability with established technologies such as APDM sensors and video recordings. The close alignment between the estimations and target values emphasizes the approach’s efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor vibrations.Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential indicators of neurological conditions. The implications of this research extend to the development of advanced gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved diagnostics and personalized healthcare.Clinical and Translational Impact Statement: This manuscript introduces an innovative approach for unattended gait assessments with potentially significant implications for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities allows for uninterrupted daily activities","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"508-519"},"PeriodicalIF":3.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic
{"title":"From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People","authors":"Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic","doi":"10.1109/JTEHM.2024.3388852","DOIUrl":"10.1109/JTEHM.2024.3388852","url":null,"abstract":"Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"448-456"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend
{"title":"Application of Statistical Analysis and Machine Learning to Identify Infants’ Abnormal Suckling Behavior","authors":"Phuong Truong;Erin Walsh;Vanessa P. Scott;Michelle Leff;Alice Chen;James Friend","doi":"10.1109/JTEHM.2024.3390589","DOIUrl":"10.1109/JTEHM.2024.3390589","url":null,"abstract":"Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling devices.Background: While it is well known breastfeeding is beneficial to the health of both mothers and infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care lacks objective measurements to screen infant suckling abnormalities within the first few days of life, a critical time to establish milk supply and successful breastfeeding practices.Materials and Methods: A non-nutritive suckling vacuum measurement system, previously developed by the authors, is used to gather data from 91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty seconds. We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency, burst duration, sucks per burst, and vacuum signal shape. We then apply computational methods (Mahalanobis distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide case studies of healthy newborn infants and infants diagnosed with ankyloglossia.Results: In a series of case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical interventions affect non-nutritive suckling measurements.Conclusions: Statistical analysis (Mahalanobis Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement complex emerging clinical evaluation technology.Clinical Impact: By analyzing non-nutritive suckling using computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling that can inform breastfeeding intervention pathways in clinic.Clinical and Translational Impact Statement: The work serves to shed light on the lack of consensus for determining appropriate intervention pathways for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary solution to resolve infant feeding difficulties.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"435-447"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504251","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140611932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modeling Physical Forces Experienced by Cancer and Stromal Cells Within Different Organ-Specific Tumor Tissue","authors":"Morgan Connaughton;Mahsa Dabagh","doi":"10.1109/JTEHM.2024.3388561","DOIUrl":"10.1109/JTEHM.2024.3388561","url":null,"abstract":"Mechanical force exerted on cancer cells by their microenvironment have been reported to drive cells toward invasive phenotypes by altering cells’ motility, proliferation, and apoptosis. These mechanical forces include compressive, tensile, hydrostatic, and shear forces. The importance of forces is then hypothesized to be an alteration of cancer cells’ and their microenvironment’s biophysical properties as the indicator of a tumor’s malignancy state. Our objective is to investigate and quantify the correlation between a tumor’s malignancy state and forces experienced by the cancer cells and components of the microenvironment. In this study, we have developed a multicomponent, three-dimensional model of tumor tissue consisting of a cancer cell surrounded by fibroblasts and extracellular matrix (ECM). Our results on three different organs including breast, kidney, and pancreas show that: A) the stresses within tumor tissue are impacted by the organ specific ECM’s biophysical properties, B) more invasive cancer cells experience higher stresses, C) in pancreas which has a softer ECM (Young modulus of 1.0 kPa) and stiffer cancer cells (Young modulus of 2.4 kPa and 1.7 kPa) than breast and kidney, cancer cells experienced significantly higher stresses, D) cancer cells in contact with ECM experienced higher stresses compared to cells surrounded by fibroblasts but the area of tumor stroma experiencing high stresses has a maximum length of \u0000<inline-formula> <tex-math>$40 ~mu text{m}$ </tex-math></inline-formula>\u0000 when the cancer cell is surrounded by fibroblasts and \u0000<inline-formula> <tex-math>$12 ~mu text{m}$ </tex-math></inline-formula>\u0000 for when the cancer cell is in vicinity of ECM. This study serves as an important first step in understanding of how the stresses experienced by cancer cells, fibroblasts, and ECM are associated with malignancy states of cancer cells in different organs. The quantification of forces exerted on cancer cells by different organ-specific ECM and at different stages of malignancy will help, first to develop theranostic strategies, second to predict accurately which tumors will become highly malignant, and third to establish accurate criteria controlling the progression of cancer cells malignancy. Furthermore, our in silico model of tumor tissue can yield critical, useful information for guiding ex vivo or in vitro experiments, narrowing down variables to be investigated, understanding what factors could be impacting cancer treatments or even biomarkers to be looking for.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"413-434"},"PeriodicalIF":3.4,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10499240","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140579954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sofia Basha;Mohammad Khorasani;Nihal Abdurahiman;Jhasketan Padhan;Victor Baez;Abdulla Al-Ansari;Panagiotis Tsiamyrtzis;Aaron T. Becker;Nikhil V. Navkar
{"title":"An Actuated Variable-View Rigid Scope System to Assist Visualization in Diagnostic Procedures","authors":"Sofia Basha;Mohammad Khorasani;Nihal Abdurahiman;Jhasketan Padhan;Victor Baez;Abdulla Al-Ansari;Panagiotis Tsiamyrtzis;Aaron T. Becker;Nikhil V. Navkar","doi":"10.1109/JTEHM.2024.3407951","DOIUrl":"10.1109/JTEHM.2024.3407951","url":null,"abstract":"Objective: Variable-view rigid scopes offer advantages compared to traditional angled laparoscopes for examining a diagnostic site. However, altering the scope’s view requires a high level of dexterity and understanding of spatial orientation. This requires an intuitive mechanism to allow an operator to easily understand the anatomical surroundings and smoothly adjust the scope’s focus during diagnosis. To address this challenge, the objective of this work is to develop a mechanized arm that assists in visualization using variable-view rigid scopes during diagnostic procedures.Methods: A system with a mechanized arm to maneuver a variable-view rigid scope (EndoCAMeleon - Karl Storz) was developed. A user study was conducted to assess the ability of the proposed mechanized arm for diagnosis in a preclinical navigation task and a simulated cystoscopy procedure.Results: The mechanized arm performed significantly better than direct maneuvering of the rigid scope. In the preclinical navigation task, it reduced the percentage of time the scope’s focus shifted outside a predefined track. Similarly, for simulated cystoscopy procedure, it reduced the duration and the perceived workload.Conclusion: The proposed mechanized arm enhances the operator’s ability to accurately maneuver a variable-view rigid scope and reduces the effort in performing diagnostic procedures.Clinical and Translational Impact Statement: The preclinical research introduces a mechanized arm to intuitively maneuver a variable-view rigid scope during diagnostic procedures, while minimizing the mental and physical workload to the operator.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"499-507"},"PeriodicalIF":3.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10543117","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141190485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun
{"title":"A Study on Intelligent Optical Bone Densitometry","authors":"Takhellambam Gautam Meitei;Wei-Chun Chang;Pou-Leng Cheong;Yi-Min Wang;Chia-Wei Sun","doi":"10.1109/JTEHM.2024.3368106","DOIUrl":"10.1109/JTEHM.2024.3368106","url":null,"abstract":"Osteoporosis is a prevalent chronic disease worldwide, particularly affecting the aging population. The gold standard diagnostic tool for osteoporosis is Dual-energy X-ray Absorptiometry (DXA). However, the expensive cost of the DXA machine and the need for skilled professionals to operate it restrict its accessibility to the general public. This paper builds upon previous research and proposes a novel approach for rapidly screening bone density. The method involves utilizing near-infrared light to capture local body information within the human body. Deep learning techniques are employed to analyze the obtained data and extract meaningful insights related to bone density. Our initial prediction, utilizing multi-linear regression, demonstrated a strong correlation (r = 0.98, p-value = 0.003**) with the measured Bone Mineral Density (BMD) obtained from Dual-energy X-ray Absorptiometry (DXA). This indicates a highly significant relationship between the predicted values and the actual BMD measurements. A deep learning-based algorithm is applied to analyze the underlying information further to predict bone density at the wrist, hip, and spine. The prediction of bone densities in the hip and spine holds significant importance due to their status as gold-standard sites for assessing an individual’s bone density. Our prediction rate had an error margin below 10% for the wrist and below 20% for the hip and spine bone density.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"401-412"},"PeriodicalIF":3.4,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10477504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CHIVID: A Rapid Deployment of Community and Home Isolation During COVID-19 Pandemics","authors":"Parpada Piamjinda;Chiraphat Boonnag;Piyalitt Ittichaiwong;Seandee Rattanasonrerk;Kanyakorn Veerakanjana;Khanita Duangchaemkarn;Warissara Limpornchitwilai;Kamonwan Thanontip;Napasara Asawalertsak;Thitikorn Kaewlee;Theerawit Wilaiprasitporn","doi":"10.1109/JTEHM.2024.3377258","DOIUrl":"10.1109/JTEHM.2024.3377258","url":null,"abstract":"Background: CHIVID is a telemedicine solution developed under tight time constraints that assists Thai healthcare practitioners in monitoring non-severe COVID-19 patients in isolation programs during crises. It assesses patient health and notifies healthcare practitioners of high-risk scenarios through a chatbot. The system was designed to integrate with the famous Thai messaging app LINE, reducing development time and enhancing user-friendliness, and the system allowed patients to upload a pulse oximeter image automatically processed by the PACMAN function to extract oxygen saturation and heart rate values to reduce patient input errors. Methods: This article describes the proposed system and presents a mixed-methods study that evaluated the system’s performance by collecting survey responses from 70 healthcare practitioners and analyzing 14,817 patient records. Results: Approximately 71.4% of healthcare practitioners use the system more than twice daily, with the majority managing 1–10 patients, while 11.4% handle over 101 patients. The progress note is a function that healthcare practitioners most frequently use and are satisfied with. Regarding patient data, 58.9%(8,724/14,817) are male, and 49.7%(7,367/14,817) within the 18 to 34 age range. The average length of isolation was 7.6 days, and patients submitted progress notes twice daily on average. Notably, individuals aged 18 to 34 demonstrated the highest utilization rates for the PACMAN function. Furthermore, most patients, totaling over 95.52%(14,153/14,817), were discharged normally. Conclusion: The findings indicate that CHIVID could be one of the telemedicine solutions for hospitals with patient overflow and healthcare practitioners unfamiliar with telemedicine technology to improve patient care during a critical crisis. Clinical and Translational Impact Statement— CHIVID’s success arises from seamlessly integrating telemedicine into third-party application within a limited timeframe and effectively using clinical decision support systems to address challenges during the COVID-19 crisis.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"390-400"},"PeriodicalIF":3.4,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10472531","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140126520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving Dysarthric Speech Segmentation With Emulated and Synthetic Augmentation","authors":"Saeid Alavi Naeini;Leif Simmatis;Deniz Jafari;Yana Yunusova;Babak Taati","doi":"10.1109/JTEHM.2024.3375323","DOIUrl":"10.1109/JTEHM.2024.3375323","url":null,"abstract":"Acoustic features extracted from speech can help with the diagnosis of neurological diseases and monitoring of symptoms over time. Temporal segmentation of audio signals into individual words is an important pre-processing step needed prior to extracting acoustic features. Machine learning techniques could be used to automate speech segmentation via automatic speech recognition (ASR) and sequence to sequence alignment. While state-of-the-art ASR models achieve good performance on healthy speech, their performance significantly drops when evaluated on dysarthric speech. Fine-tuning ASR models on impaired speech can improve performance in dysarthric individuals, but it requires representative clinical data, which is difficult to collect and may raise privacy concerns. This study explores the feasibility of using two augmentation methods to increase ASR performance on dysarthric speech: 1) healthy individuals varying their speaking rate and loudness (as is often used in assessments of pathological speech); 2) synthetic speech with variations in speaking rate and accent (to ensure more diverse vocal representations and fairness). Experimental evaluations showed that fine-tuning a pre-trained ASR model with data from these two sources outperformed a model fine-tuned only on real clinical data and matched the performance of a model fine-tuned on the combination of real clinical data and synthetic speech. When evaluated on held-out acoustic data from 24 individuals with various neurological diseases, the best performing model achieved an average word error rate of 5.7% and a mean correct count accuracy of 94.4%. In segmenting the data into individual words, a mean intersection-over-union of 89.2% was obtained against manual parsing (ground truth). It can be concluded that emulated and synthetic augmentations can significantly reduce the need for real clinical data of dysarthric speech when fine-tuning ASR models and, in turn, for speech segmentation.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"382-389"},"PeriodicalIF":3.4,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10464345","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140105378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multispectral Imaging-Based System for Detecting Tissue Oxygen Saturation With Wound Segmentation for Monitoring Wound Healing","authors":"Chih-Lung Lin;Meng-Hsuan Wu;Yuan-Hao Ho;Fang-Yi Lin;Yu-Hsien Lu;Yuan-Yu Hsueh;Chia-Chen Chen","doi":"10.1109/JTEHM.2024.3399232","DOIUrl":"10.1109/JTEHM.2024.3399232","url":null,"abstract":"Objective: Blood circulation is an important indicator of wound healing. In this study, a tissue oxygen saturation detecting (TOSD) system that is based on multispectral imaging (MSI) is proposed to quantify the degree of tissue oxygen saturation (StO2) in cutaneous tissues. Methods: A wound segmentation algorithm is used to segment automatically wound and skin areas, eliminating the need for manual labeling and applying adaptive tissue optics. Animal experiments were conducted on six mice in which they were observed seven times, once every two days. The TOSD system illuminated cutaneous tissues with two wavelengths of light - red (\u0000<inline-formula> <tex-math>$mathrm {lambda } = 660$ </tex-math></inline-formula>\u0000 nm) and near-infrared (\u0000<inline-formula> <tex-math>$mathrm {lambda } = 880$ </tex-math></inline-formula>\u0000 nm), and StO2 levels were calculated using images that were captured using a monochrome camera. The wound segmentation algorithm using ResNet34-based U-Net was integrated with computer vision techniques to improve its performance. Results: Animal experiments revealed that the wound segmentation algorithm achieved a Dice score of 93.49%. The StO2 levels that were determined using the TOSD system varied significantly among the phases of wound healing. Changes in StO2 levels were detected before laser speckle contrast imaging (LSCI) detected changes in blood flux. Moreover, statistical features that were extracted from the TOSD system and LSCI were utilized in principal component analysis (PCA) to visualize different wound healing phases. The average silhouette coefficients of the TOSD system with segmentation (ResNet34-based U-Net) and LSCI were 0.2890 and 0.0194, respectively. Conclusion: By detecting the StO2 levels of cutaneous tissues using the TOSD system with segmentation, the phases of wound healing were accurately distinguished. This method can support medical personnel in conducting precise wound assessments. Clinical and Translational Impact Statement—This study supports efforts in monitoring StO2 levels, wound segmentation, and wound healing phase classification to improve the efficiency and accuracy of preclinical research in the field.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"468-479"},"PeriodicalIF":3.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528306","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenyu Xing;Yanping Yang;Yannan Zhou;Tao Jiang;Yifang Li;Yuanlin Song;Dongni Hou;Dean TA
{"title":"Weakly-Supervised Segmentation-Based Quantitative Characterization of Pulmonary Cavity Lesions in CT Scans","authors":"Wenyu Xing;Yanping Yang;Yannan Zhou;Tao Jiang;Yifang Li;Yuanlin Song;Dongni Hou;Dean TA","doi":"10.1109/JTEHM.2024.3399261","DOIUrl":"10.1109/JTEHM.2024.3399261","url":null,"abstract":"Objective: Pulmonary cavity lesion is one of the commonly seen lesions in lung caused by a variety of malignant and non-malignant diseases. Diagnosis of a cavity lesion is commonly based on accurate recognition of the typical morphological characteristics. A deep learning-based model to automatically detect, segment, and quantify the region of cavity lesion on CT scans has potential in clinical diagnosis, monitoring, and treatment efficacy assessment. Methods: A weakly-supervised deep learning-based method named CSA2-ResNet was proposed to quantitatively characterize cavity lesions in this paper. The lung parenchyma was firstly segmented using a pretrained 2D segmentation model, and then the output with or without cavity lesions was fed into the developed deep neural network containing hybrid attention modules. Next, the visualized lesion was generated from the activation region of the classification network using gradient-weighted class activation mapping, and image processing was applied for post-processing to obtain the expected segmentation results of cavity lesions. Finally, the automatic characteristic measurement of cavity lesions (e.g., area and thickness) was developed and verified. Results: the proposed weakly-supervised segmentation method achieved an accuracy, precision, specificity, recall, and F1-score of 98.48%, 96.80%, 97.20%, 100%, and 98.36%, respectively. There is a significant improvement (P < 0.05) compared to other methods. Quantitative characterization of morphology also obtained good analysis effects. Conclusions: The proposed easily-trained and high-performance deep learning model provides a fast and effective way for the diagnosis and dynamic monitoring of pulmonary cavity lesions in clinic. Clinical and Translational Impact Statement: This model used artificial intelligence to achieve the detection and quantitative analysis of pulmonary cavity lesions in CT scans. The morphological features revealed in experiments can be utilized as potential indicators for diagnosis and dynamic monitoring of patients with cavity lesions","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"457-467"},"PeriodicalIF":3.4,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10528288","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140925641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}