Giuseppe Turini;Marina Carbone;Sara Condino;Donato Gallone;Vincenzo Ferrari;Marco Gesi;Michelangelo Scaglione;Paolo Parchi;Rosanna Maria Viglialoro
{"title":"Projected AR Serious Game “Painting Discovery” for Shoulder Rehabilitation: Assessment With Technicians, Physiotherapists, and Patients","authors":"Giuseppe Turini;Marina Carbone;Sara Condino;Donato Gallone;Vincenzo Ferrari;Marco Gesi;Michelangelo Scaglione;Paolo Parchi;Rosanna Maria Viglialoro","doi":"10.1109/JTEHM.2025.3557250","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3557250","url":null,"abstract":"Objective: Motivation and adherence are crucial for effective rehabilitation, yet engagement remains a challenge in upper limb physiotherapy. Serious Games (SGs) have emerged as a promising tool to enhance patient motivation. This study evaluates Painting Discovery, a projected augmented reality (AR) SG for shoulder rehabilitation, assessing engagement, ergonomics, and its potential to differentiate motor performance between healthy and those with rheumatoid arthritis, bursitis, subacromial impingement, rotator cuff tear, or calcific tendinopathy. Additionally, it examines improvements in pathological subjects following physiotherapy. Method: Sixteen healthy and seven pathological subjects participated. Engagement, ergonomics, and satisfaction were assessed using Likert-scale questionnaires. Motor performance was evaluated through completion time, speed, acceleration, and normalized jerk. Four pathological subjects underwent pre- and post-physiotherapy assessments over six weeks. Results: SG was highly engaging and ergonomic, with no significant differences based on prior video game or AR experience. The pathological group had longer completion times (<inline-formula> <tex-math>$56.49~pm ~37.85$ </tex-math></inline-formula>s vs. <inline-formula> <tex-math>$39.02~pm ~24.21$ </tex-math></inline-formula>s, p < 0.001), lower acceleration (<inline-formula> <tex-math>$1.11~pm ~0.92$ </tex-math></inline-formula> m/s2 vs. <inline-formula> <tex-math>$0.79~pm ~0.56$ </tex-math></inline-formula> m/s2, p < 0.001), and higher jerk (<inline-formula> <tex-math>$6.68times 107~pm ~1.37times 108$ </tex-math></inline-formula> m/s3 vs. <inline-formula> <tex-math>$9.22times 106~pm ~2.51times 107$ </tex-math></inline-formula> m/s3, p = 0.025) then healthy subjects. After physiotherapy, completion time and normalized jerk indicated enhanced efficiency and control. Conclusions: Painting Discovery shows strong potential as an engaging, accessible rehabilitation tool. While effective in differentiating motor impairments, its small sample size and horizontal-plane movement focus limit broader conclusions. Future studies should expand participation, incorporate vertical-plane movements, and refine performance metrics for clinical validation.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"149-157"},"PeriodicalIF":3.7,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10947717","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143845494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jack Curley;Esteban Gomez;Laith Adnan;Isabelle Ablao;Jayden Sumbillo;Henry York;Hakan Töreyin
{"title":"Feasibility Analysis of a Portable Diaphragmatic Efficiency Monitor for CSCI Patients","authors":"Jack Curley;Esteban Gomez;Laith Adnan;Isabelle Ablao;Jayden Sumbillo;Henry York;Hakan Töreyin","doi":"10.1109/JTEHM.2025.3574553","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3574553","url":null,"abstract":"Objective: This study evaluates the feasibility of a noninvasive system for monitoring diaphragmatic efficiency in people with cervical spinal cord injury (CSCI). Methods: Two versions of a portable hardware system were developed using impedance pneumography (IP) to measure tidal volume (TV) and surface electromyography (sEMG) to assess diaphragm electrical activity (EAdi). Version 1 was used to determine optimal electrode positions, while Version 2 integrated these sensor systems into a compact, portable design. Data from eight healthy male participants were analyzed to assess the correlation and accuracy of TV and respiration rate (RR) prediction using IP and the correlation between sEMG signals and maximum inspiratory pressure (MIP). Results: For IP, measurements between the upper sternum and the midclavicular line (MCL) at the 4th intercostal (IC) space showed the highest correlation with true tidal volume. For sEMG, measurements between the mid-sternum and the 6th IC space demonstrated the strongest correlation with MIP. The integrated version 2 hardware demonstrates simultaneous IP and sEMG measurement while dissipating 2.17 mW. Discussion/Conclusion: The proposed system and the results presented may lead to a practical, cost-effective solution for continuous diaphragmatic efficiency monitoring, and thus enabling home-based respiratory care of CSCI patients. Clinical and Translational Impact Statement– This work presents the feasibility of building a wearable system that can unobtrusively monitor diaphragmatic efficiency, and thus enabling noninvasive, cost-effective, and home-based respiratory care for CSCI patients, facilitating early intervention and improved long-term health outcomes. This study is categorized under the early/pre-clinical research category of the NIH Clinical spectrum.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"246-250"},"PeriodicalIF":3.7,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017366","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144272970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection of Chronic Musculoskeletal Pain Using Voice Characteristics","authors":"Masakazu Higuchi;Toshiko Iidaka;Chiaki Horii;Gaku Tanegashima;Hiroyuki Oka;Hiroshi Hashizume;Hiroshi Yamada;Munehito Yoshida;Sakae Tanaka;Noriko Yoshimura;Mitsuteru Nakamura;Shinichi Tokuno","doi":"10.1109/JTEHM.2025.3553892","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3553892","url":null,"abstract":"Physical pain, particularly musculoskeletal pain, negatively impacts the activities of daily life and quality of life of elderly people. Because pain is a subjective sensation and there are no standard assessment procedures to detect pain, we attempted to quantitatively determine the actual state of chronic pain caused by musculoskeletal organs and related factors based on questionnaires. First, we studied techniques for diagnosing diseases by monitoring the involuntary characteristics of the voice. Then, we applied the technique based on voice characteristics and proposed a voice index to detect chronic musculoskeletal pain. The voice index was derived based on the assumption that physiological changes due to chronic musculoskeletal pain also affect the vocal cords. Subjects in this study were adults, 65 years of age or older, with chronic pain in the musculoskeletal system (lumbar and/or knees). A large-scale population-based cohort study was conducted in 2019. Voice characteristics were extracted from the recorded voices of the subjects, and the characteristics with similar properties were organized into several principal components using principal component analysis. The principal components were further combined using logistic regression analysis to propose a voice index that discriminates between normal subjects and subjects suffering from chronic musculoskeletal pain. A discrimination accuracy of approximately 80% was obtained using the dataset corresponding to the participants with knee pain only, and a discrimination accuracy of approximately 70% was obtained during cross-validation of the same dataset. The proposed voice index may serve as a novel tool for detecting chronic musculoskeletal pain. Clinical impact: The voice-based pain detection holds clinical significance owing to its noninvasive nature, ease of administration, and potential to efficiently assess large populations within a short time frame.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"136-148"},"PeriodicalIF":3.7,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937750","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143801054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"2024 Index IEEE Journal of Translational Engineering in Health and Medicine Vol. 12","authors":"","doi":"10.1109/JTEHM.2025.3551783","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3551783","url":null,"abstract":"","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"740-756"},"PeriodicalIF":3.7,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10937338","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143688092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Luisa Neubig;Deirdre Larsen;Melda Kunduk;Andreas M. Kist
{"title":"Unstructured Electronic Health Records of Dysphagic Patients Analyzed by Large Language Models","authors":"Luisa Neubig;Deirdre Larsen;Melda Kunduk;Andreas M. Kist","doi":"10.1109/JTEHM.2025.3571255","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3571255","url":null,"abstract":"Objective: Dysphagia is a common and complex disorder that complicates both diagnoses and treatment. Consequently, the associated electronic health records (EHR) are often unstructured and complex, posing challenges for systematic data analysis.Methods and procedures: In this study, we employ natural language processing (NLP) techniques and large language models (LLMs) to automatically analyze clinical narratives and extract diagnostic information from a diverse set of EHRs. Our dataset includes medical records from 486 patients, representing a group with diverse dysphagic conditions. We analyze diagnoses provided in unstructured free text that do not follow a standardized structure. We utilize clustering algorithms on the extracted diagnostic features to identify distinct groups of patients who share similar pathophysiological swallowing dysfunctions.Results: We found that basic NLP techniques often provide limited insights due to the high variability of the data. In contrast, LLMs help to bridge the gap in understanding the nuanced medical information about dysphagia and related conditions. Although applying these advanced LLM models is not straightforward, our results demonstrate that leveraging closed-source models can effectively cluster different categories of dysphagia.Conclusion: Our study provides therefore evidence that LLMs are highly promising in future dysphagia research.Clinical impact: Dysphagia is a symptom associated with various diseases, though its underlying relationships remain unclear. This study demonstrates how analyzing large volumes of electronic health records can help clarify the causes of dysphagia and identify contributing factors. By applying natural language processing, we aim to enhance both understanding and treatment, supporting clinical staff in improving individualized care by identifying relevant patient cohorts. Clinical and Translational Impact Statement: This study uses LLMs to efficiently preprocess unstructured EHRs, improving dysphagia diagnosis and patient clustering. It aligns with Clinical Research, enhancing diagnostic speed and enabling personalized treatment.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"237-245"},"PeriodicalIF":3.7,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11006689","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144171055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alex C. Barksdale;Natalie G. Ferris;Eli Mattingly;Monika Śliwiak;Bastien Guerin;Lawrence L. Wald;Mathias Davids;Valerie Klein
{"title":"Measurement of Peripheral Nerve Magnetostimulation Thresholds of a Head Solenoid Coil Between 200 Hz and 88.1 kHz","authors":"Alex C. Barksdale;Natalie G. Ferris;Eli Mattingly;Monika Śliwiak;Bastien Guerin;Lawrence L. Wald;Mathias Davids;Valerie Klein","doi":"10.1109/JTEHM.2025.3570611","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3570611","url":null,"abstract":"Magnetic fields switching at kilohertz frequencies induce electric fields in the body, which can cause peripheral nerve stimulation (PNS). Although magnetostimulation has been extensively studied below 10 kHz, the behavior of PNS at higher frequencies remains poorly understood. This study aims to investigate PNS thresholds at frequencies up to 88.1 kHz and to explore deviations from the widely accepted hyperbolic strength-duration curve (SDC).PNS thresholds were measured in the head of 8 human volunteers using a solenoidal coil at 16 distinct frequencies, ranging from 200 Hz to 88.1 kHz. A hyperbolic SDC was used as a reference to compare the frequency-dependent behavior of PNS thresholds.Contrary to the predictions of the hyperbolic SDC, PNS thresholds did not decrease monotonically with frequency. Instead, thresholds reached a minimum near 25 kHz, after which they increased by an average of 39% from 25 kHz to 88.1 kHz across subjects. This pattern indicates a significant deviation from previously observed behavior at lower frequencies.Our results suggest that PNS thresholds exhibit a non-monotonic frequency dependence at higher frequencies, diverging from the traditional hyperbolic SDC. These findings offer critical data for refining neurodynamic models and provide insights for setting PNS safety limits in applications like MRI gradient coils and magnetic particle imaging (MPI). Further investigation is needed to understand the biological mechanisms driving these deviations beyond 25 kHz.<italic><b>Clinical impact</b></i>—These findings call for further basic research into biological mechanisms underlying high frequency PNS threshold trends, and supports refinement of safety guidelines for MRI and MPI systems for clinical implementation.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"275-285"},"PeriodicalIF":3.7,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11005621","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144299302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuan-Jin Lin;Shih-Lun Chen;Yi-Cheng Mao;Tsung-Yi Chen;Cheng-Hao Peng;Tzu-Hsiang Tsai;Kuo-Chen Li;Chiung-An Chen;Wei-Chen Tu;Patricia Angela R. Abu
{"title":"Precision Oral Medicine: A DPR Segmentation and Transfer Learning Approach for Detecting Third Molar Compress Inferior Alveolar Nerve","authors":"Yuan-Jin Lin;Shih-Lun Chen;Yi-Cheng Mao;Tsung-Yi Chen;Cheng-Hao Peng;Tzu-Hsiang Tsai;Kuo-Chen Li;Chiung-An Chen;Wei-Chen Tu;Patricia Angela R. Abu","doi":"10.1109/JTEHM.2025.3568922","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3568922","url":null,"abstract":"Extraction of the third molar of the mandible is one of the most common oral surgical procedures. Preoperative monitoring and assessment are crucial to mitigate neurological risks. Identifying whether the third molar in the mandible compresses the inferior alveolar nerve still relies on dental professionals, a task that is repetitive and time-consuming. Thus, the primary objective is to utilize dental panoramic radiography for image processing and classify whether the third molar compresses the inferior alveolar nerve, aiming to reduce the demand for CT images in symptom diagnosis and mitigate the risks associated with high-dose radiation. This study proposes an innovative dental panoramic radiography segmentation technique to locate the third molar position. Subsequently, an innovative edge masking enhancement method is used to extract features of the inferior alveolar nerve and the third molar. Moreover, a transformer-based image detection model to consider whether the third molar compresses the inferior alveolar nerve. The third molar position localization method achieved an accuracy rate of 97.92%, compared to recent research at least improved by 3.6% accuracy. Subsequently, innovative edge masking and image enhancement methods improve classification accuracy by 4.3%, when supplemented with computed tomography scan images for further evaluation, the maximum accuracy reached 98.45%, representing a 4.5% improvement compared to previous studies. The third molar position detection results will impact the identification of the inferior alveolar nerve compressed by the third molar. Through the innovative edge region segmentation algorithm can effectively distinguish this object, and the overall evaluation accuracy can be improved by approximately 3.8%.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"286-298"},"PeriodicalIF":3.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11000294","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144323021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Letter to the Editor on “From Concept to Clinic: Living Labs and Regulatory Sandboxes for Health System Digitalization and the Integration of Innovative Devices Into Clinical Workflows”","authors":"Rebecca Mathias;Anett Schönfelder;Cindy Welzel;Stephen Gilbert","doi":"10.1109/JTEHM.2025.3557508","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3557508","url":null,"abstract":"Digital health and AI-enabled technologies hold the promise of addressing gaps in healthcare, but balancing rapid market access with the need for safe, functional, and user-centered solutions remains a challenge <xref>[1]</xref>, <xref>[2]</xref>. Regulatory requirements for device development and market approval demand detailed documentation and predetermined protocols, which can limit the adaptability developers require for iterative improvement and real-world testing with patients and healthcare professionals <xref>[1]</xref>, <xref>[3]</xref>, <xref>[4]</xref>—an approach that would be highly beneficial for digital and AI-enabled technologies. As a result, key factors like clinical workflow integration, interoperability, and usability with the real range of in-use devices are often overlooked or addressed in a cursory fashion <xref>[5]</xref>.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"214-215"},"PeriodicalIF":3.7,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10999161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143937981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Clinical Tuning Framework for Continuous Kinematic and Impedance Control of a Powered Knee-Ankle Prosthesis","authors":"Emma Reznick;T. Kevin Best;Robert D. Gregg","doi":"10.1109/JTEHM.2025.3567578","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3567578","url":null,"abstract":"<bold>Objective:</b> Configuring a prosthetic leg is an integral part of the fitting process, but the personalization of a multi-modal powered knee-ankle prosthesis is often too complex to realize in a clinical environment. This paper develops both the technical means to individualize a hybrid kinematic-impedance controller for variable-incline walking and sit-stand transitions, and an intuitive Clinical Tuning Interface (CTI) that allows prosthetists to directly modify the controller behavior. <bold>Methods and procedures:</b> Utilizing an established method for predicting kinematic gait individuality alongside a new parallel approach for kinetic individuality, we personalize continuous-phase/task models of joint impedance (during stance) and kinematics (during swing) using tuned characteristics exclusively from level-ground walking. To take advantage of this method, we developed a CTI that translates common clinical tuning parameters into model adjustments for the walking and sit-stand controllers. We then conducted a case study where a prosthetist iteratively tuned the powered prosthesis to an above-knee amputee participant in a simulated clinical session involving sit-stand transitions and level walking, from which incline/decline walking features were automatically calibrated. <bold>Results:</b> The prosthetist fully tuned the multi-activity prosthesis controller in under 20 min. Each iteration of tuning (i.e., observation, parameter adjustment, and model reprocessing) took 2 min on average for walking and 1 min on average for sit-stand. The tuned behavior changes were appropriately manifested in the commanded prosthesis torques, both at the manually tuned tasks and automatically tuned tasks (inclines). <bold>Conclusion:</b> The CTI leveraged able-bodied trends to efficiently personalize a wide array of walking tasks and sit-stand transitions, demonstrating the efficiency necessary for powered knee-ankle prostheses to become clinically viable. <bold>Clinical impact:</b> This paper introduces a clinical tuning interface that simplifies the tuning process for multimodal robotic prosthetic legs, reducing the time required from several hours to just 20 minutes thus improving clinical feasibility.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"227-236"},"PeriodicalIF":3.7,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10990182","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144170997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cross-Database Evaluation of Deep Learning Methods for Intrapartum Cardiotocography Classification","authors":"Lochana Mendis;Debjyoti Karmakar;Marimuthu Palaniswami;Fiona Brownfoot;Emerson Keenan","doi":"10.1109/JTEHM.2025.3548401","DOIUrl":"https://doi.org/10.1109/JTEHM.2025.3548401","url":null,"abstract":"Continuous monitoring of fetal heart rate (FHR) and uterine contractions (UC), otherwise known as cardiotocography (CTG), is often used to assess the risk of fetal compromise during labor. However, interpreting CTG recordings visually is challenging for clinicians, given the complexity of CTG patterns, leading to poor sensitivity. Efforts to address this issue have focused on data-driven deep-learning methods to detect fetal compromise automatically. However, their progress is impeded by limited CTG training datasets and the absence of a standardized evaluation workflow, hindering algorithm comparisons. In this study, we use a private CTG dataset of 9,887 CTG recordings with pH measurements and 552 CTG recordings from the open-access CTU-UHB dataset to conduct a cross-database evaluation of six deep-learning models for fetal compromise detection. We explore the impact of input selection of FHR and UC signals, signal pre-processing, downsampling frequency, and the influence of removing intermediate pH samples from the training dataset. Our findings reveal that using only FHR and pre-processing FHR with artefact removal and interpolation provides a significant improvement to classification performance for some model architectures while excluding intermediate pH samples did not significantly improve performance for any model. From our comparison of the six models, ResNet exhibited the strongest fetal compromise classification performance across both databases at a downsampling rate of 1Hz. Finally, class activation maps from highly contributing signal regions in the ResNet model aligned with clinical knowledge of compromised FHR patterns, highlighting the model’s interpretability. These insights may serve as a standardized reference for developing and comparing future works in this domain. Clinical and Translational Impact: This study provides a standardized workflow for comparing deep-learning methods for CTG classification. Ensuring new methods show generalizability and interpretability will improve their robustness and applicability in clinical settings.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"123-135"},"PeriodicalIF":3.7,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10912500","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143706796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}