{"title":"Cross-Database Evaluation of Deep Learning Methods for Intrapartum Cardiotocography Classification","authors":"Lochana Mendis;Debjyoti Karmakar;Marimuthu Palaniswami;Fiona Brownfoot;Emerson Keenan","doi":"10.1109/JTEHM.2025.3548401","DOIUrl":null,"url":null,"abstract":"Continuous monitoring of fetal heart rate (FHR) and uterine contractions (UC), otherwise known as cardiotocography (CTG), is often used to assess the risk of fetal compromise during labor. However, interpreting CTG recordings visually is challenging for clinicians, given the complexity of CTG patterns, leading to poor sensitivity. Efforts to address this issue have focused on data-driven deep-learning methods to detect fetal compromise automatically. However, their progress is impeded by limited CTG training datasets and the absence of a standardized evaluation workflow, hindering algorithm comparisons. In this study, we use a private CTG dataset of 9,887 CTG recordings with pH measurements and 552 CTG recordings from the open-access CTU-UHB dataset to conduct a cross-database evaluation of six deep-learning models for fetal compromise detection. We explore the impact of input selection of FHR and UC signals, signal pre-processing, downsampling frequency, and the influence of removing intermediate pH samples from the training dataset. Our findings reveal that using only FHR and pre-processing FHR with artefact removal and interpolation provides a significant improvement to classification performance for some model architectures while excluding intermediate pH samples did not significantly improve performance for any model. From our comparison of the six models, ResNet exhibited the strongest fetal compromise classification performance across both databases at a downsampling rate of 1Hz. Finally, class activation maps from highly contributing signal regions in the ResNet model aligned with clinical knowledge of compromised FHR patterns, highlighting the model’s interpretability. These insights may serve as a standardized reference for developing and comparing future works in this domain. Clinical and Translational Impact: This study provides a standardized workflow for comparing deep-learning methods for CTG classification. Ensuring new methods show generalizability and interpretability will improve their robustness and applicability in clinical settings.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"123-135"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10912500","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10912500/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Continuous monitoring of fetal heart rate (FHR) and uterine contractions (UC), otherwise known as cardiotocography (CTG), is often used to assess the risk of fetal compromise during labor. However, interpreting CTG recordings visually is challenging for clinicians, given the complexity of CTG patterns, leading to poor sensitivity. Efforts to address this issue have focused on data-driven deep-learning methods to detect fetal compromise automatically. However, their progress is impeded by limited CTG training datasets and the absence of a standardized evaluation workflow, hindering algorithm comparisons. In this study, we use a private CTG dataset of 9,887 CTG recordings with pH measurements and 552 CTG recordings from the open-access CTU-UHB dataset to conduct a cross-database evaluation of six deep-learning models for fetal compromise detection. We explore the impact of input selection of FHR and UC signals, signal pre-processing, downsampling frequency, and the influence of removing intermediate pH samples from the training dataset. Our findings reveal that using only FHR and pre-processing FHR with artefact removal and interpolation provides a significant improvement to classification performance for some model architectures while excluding intermediate pH samples did not significantly improve performance for any model. From our comparison of the six models, ResNet exhibited the strongest fetal compromise classification performance across both databases at a downsampling rate of 1Hz. Finally, class activation maps from highly contributing signal regions in the ResNet model aligned with clinical knowledge of compromised FHR patterns, highlighting the model’s interpretability. These insights may serve as a standardized reference for developing and comparing future works in this domain. Clinical and Translational Impact: This study provides a standardized workflow for comparing deep-learning methods for CTG classification. Ensuring new methods show generalizability and interpretability will improve their robustness and applicability in clinical settings.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.