Jack Curley;Esteban Gomez;Laith Adnan;Isabelle Ablao;Jayden Sumbillo;Henry York;Hakan Töreyin
{"title":"CSCI患者便携式膈肌效率监测仪的可行性分析","authors":"Jack Curley;Esteban Gomez;Laith Adnan;Isabelle Ablao;Jayden Sumbillo;Henry York;Hakan Töreyin","doi":"10.1109/JTEHM.2025.3574553","DOIUrl":null,"url":null,"abstract":"Objective: This study evaluates the feasibility of a noninvasive system for monitoring diaphragmatic efficiency in people with cervical spinal cord injury (CSCI). Methods: Two versions of a portable hardware system were developed using impedance pneumography (IP) to measure tidal volume (TV) and surface electromyography (sEMG) to assess diaphragm electrical activity (EAdi). Version 1 was used to determine optimal electrode positions, while Version 2 integrated these sensor systems into a compact, portable design. Data from eight healthy male participants were analyzed to assess the correlation and accuracy of TV and respiration rate (RR) prediction using IP and the correlation between sEMG signals and maximum inspiratory pressure (MIP). Results: For IP, measurements between the upper sternum and the midclavicular line (MCL) at the 4th intercostal (IC) space showed the highest correlation with true tidal volume. For sEMG, measurements between the mid-sternum and the 6th IC space demonstrated the strongest correlation with MIP. The integrated version 2 hardware demonstrates simultaneous IP and sEMG measurement while dissipating 2.17 mW. Discussion/Conclusion: The proposed system and the results presented may lead to a practical, cost-effective solution for continuous diaphragmatic efficiency monitoring, and thus enabling home-based respiratory care of CSCI patients. Clinical and Translational Impact Statement– This work presents the feasibility of building a wearable system that can unobtrusively monitor diaphragmatic efficiency, and thus enabling noninvasive, cost-effective, and home-based respiratory care for CSCI patients, facilitating early intervention and improved long-term health outcomes. This study is categorized under the early/pre-clinical research category of the NIH Clinical spectrum.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"13 ","pages":"246-250"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017366","citationCount":"0","resultStr":"{\"title\":\"Feasibility Analysis of a Portable Diaphragmatic Efficiency Monitor for CSCI Patients\",\"authors\":\"Jack Curley;Esteban Gomez;Laith Adnan;Isabelle Ablao;Jayden Sumbillo;Henry York;Hakan Töreyin\",\"doi\":\"10.1109/JTEHM.2025.3574553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: This study evaluates the feasibility of a noninvasive system for monitoring diaphragmatic efficiency in people with cervical spinal cord injury (CSCI). Methods: Two versions of a portable hardware system were developed using impedance pneumography (IP) to measure tidal volume (TV) and surface electromyography (sEMG) to assess diaphragm electrical activity (EAdi). Version 1 was used to determine optimal electrode positions, while Version 2 integrated these sensor systems into a compact, portable design. Data from eight healthy male participants were analyzed to assess the correlation and accuracy of TV and respiration rate (RR) prediction using IP and the correlation between sEMG signals and maximum inspiratory pressure (MIP). Results: For IP, measurements between the upper sternum and the midclavicular line (MCL) at the 4th intercostal (IC) space showed the highest correlation with true tidal volume. For sEMG, measurements between the mid-sternum and the 6th IC space demonstrated the strongest correlation with MIP. The integrated version 2 hardware demonstrates simultaneous IP and sEMG measurement while dissipating 2.17 mW. Discussion/Conclusion: The proposed system and the results presented may lead to a practical, cost-effective solution for continuous diaphragmatic efficiency monitoring, and thus enabling home-based respiratory care of CSCI patients. Clinical and Translational Impact Statement– This work presents the feasibility of building a wearable system that can unobtrusively monitor diaphragmatic efficiency, and thus enabling noninvasive, cost-effective, and home-based respiratory care for CSCI patients, facilitating early intervention and improved long-term health outcomes. This study is categorized under the early/pre-clinical research category of the NIH Clinical spectrum.\",\"PeriodicalId\":54255,\"journal\":{\"name\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"volume\":\"13 \",\"pages\":\"246-250\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11017366\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11017366/\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/11017366/","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Feasibility Analysis of a Portable Diaphragmatic Efficiency Monitor for CSCI Patients
Objective: This study evaluates the feasibility of a noninvasive system for monitoring diaphragmatic efficiency in people with cervical spinal cord injury (CSCI). Methods: Two versions of a portable hardware system were developed using impedance pneumography (IP) to measure tidal volume (TV) and surface electromyography (sEMG) to assess diaphragm electrical activity (EAdi). Version 1 was used to determine optimal electrode positions, while Version 2 integrated these sensor systems into a compact, portable design. Data from eight healthy male participants were analyzed to assess the correlation and accuracy of TV and respiration rate (RR) prediction using IP and the correlation between sEMG signals and maximum inspiratory pressure (MIP). Results: For IP, measurements between the upper sternum and the midclavicular line (MCL) at the 4th intercostal (IC) space showed the highest correlation with true tidal volume. For sEMG, measurements between the mid-sternum and the 6th IC space demonstrated the strongest correlation with MIP. The integrated version 2 hardware demonstrates simultaneous IP and sEMG measurement while dissipating 2.17 mW. Discussion/Conclusion: The proposed system and the results presented may lead to a practical, cost-effective solution for continuous diaphragmatic efficiency monitoring, and thus enabling home-based respiratory care of CSCI patients. Clinical and Translational Impact Statement– This work presents the feasibility of building a wearable system that can unobtrusively monitor diaphragmatic efficiency, and thus enabling noninvasive, cost-effective, and home-based respiratory care for CSCI patients, facilitating early intervention and improved long-term health outcomes. This study is categorized under the early/pre-clinical research category of the NIH Clinical spectrum.
期刊介绍:
The IEEE Journal of Translational Engineering in Health and Medicine is an open access product that bridges the engineering and clinical worlds, focusing on detailed descriptions of advanced technical solutions to a clinical need along with clinical results and healthcare relevance. The journal provides a platform for state-of-the-art technology directions in the interdisciplinary field of biomedical engineering, embracing engineering, life sciences and medicine. A unique aspect of the journal is its ability to foster a collaboration between physicians and engineers for presenting broad and compelling real world technological and engineering solutions that can be implemented in the interest of improving quality of patient care and treatment outcomes, thereby reducing costs and improving efficiency. The journal provides an active forum for clinical research and relevant state-of the-art technology for members of all the IEEE societies that have an interest in biomedical engineering as well as reaching out directly to physicians and the medical community through the American Medical Association (AMA) and other clinical societies. The scope of the journal includes, but is not limited, to topics on: Medical devices, healthcare delivery systems, global healthcare initiatives, and ICT based services; Technological relevance to healthcare cost reduction; Technology affecting healthcare management, decision-making, and policy; Advanced technical work that is applied to solving specific clinical needs.