CRISPR Journal最新文献

筛选
英文 中文
Genome Editing Therapy for the Blood: Ex Vivo Success and In Vivo Prospects. 血液基因组编辑疗法:体内成功与体内前景。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 Epub Date: 2024-09-26 DOI: 10.1089/crispr.2024.0036
Christy A George, Srishti U Sahu, Lorena de Oñate, Bruno Solano de Freitas Souza, Ross C Wilson
{"title":"Genome Editing Therapy for the Blood: <i>Ex Vivo</i> Success and <i>In Vivo</i> Prospects.","authors":"Christy A George, Srishti U Sahu, Lorena de Oñate, Bruno Solano de Freitas Souza, Ross C Wilson","doi":"10.1089/crispr.2024.0036","DOIUrl":"10.1089/crispr.2024.0036","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) provide the body with a continuous supply of healthy, functional blood cells. In patients with hematopoietic malignancies, immunodeficiencies, lysosomal storage disorders, and hemoglobinopathies, therapeutic genome editing offers hope for corrective intervention, with even modest editing efficiencies likely to provide clinical benefit. Engineered white blood cells, such as T cells, can be applied therapeutically to address monogenic disorders of the immune system, HIV infection, or cancer. The versatility of CRISPR-based tools allows countless new medical interventions for diseases of the blood, and rapid <i>ex vivo</i> success has been demonstrated in hemoglobinopathies via transplantation of the patient's HSCs following genome editing in a laboratory setting. Here we review recent advances in therapeutic genome editing of HSCs and T cells, focusing on the progress in <i>ex vivo</i> contexts, the promise of improved access via <i>in vivo</i> delivery, as well as the ongoing preclinical efforts that may enable the transition from <i>ex vivo</i> to <i>in vivo</i> administration. We discuss the challenges, limitations, and future prospects of this rapidly developing field, which may one day establish CRISPR as the standard of care for some diseases affecting the blood.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"231-248"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for The CRISPR Journal. 罗莎琳德-富兰克林学会自豪地宣布《CRISPR 期刊》2023 年度获奖者。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.55675.rfs2023
Suchita Nety
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>The CRISPR Journal</i>.","authors":"Suchita Nety","doi":"10.1089/crispr.2024.55675.rfs2023","DOIUrl":"10.1089/crispr.2024.55675.rfs2023","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"211"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142669659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparison of Gene-Editing Approaches for Severe Congenital Neutropenia-Causing Mutations in the ELANE Gene. 比较针对 ELANE 基因中导致严重先天性中性粒细胞减少症突变的基因编辑方法
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.0006
Malte Ulrich Ritter, Masoud Nasri, Benjamin Dannenmann, Perihan Mir, Benjamin Secker, Diana Amend, Maksim Klimiankou, Karl Welte, Julia Skokowa
{"title":"Comparison of Gene-Editing Approaches for Severe Congenital Neutropenia-Causing Mutations in the <i>ELANE</i> Gene.","authors":"Malte Ulrich Ritter, Masoud Nasri, Benjamin Dannenmann, Perihan Mir, Benjamin Secker, Diana Amend, Maksim Klimiankou, Karl Welte, Julia Skokowa","doi":"10.1089/crispr.2024.0006","DOIUrl":"10.1089/crispr.2024.0006","url":null,"abstract":"<p><p>Safety considerations for gene therapies of inherited preleukemia syndromes, including severe congenital neutropenia (CN), are paramount. We compared several strategies for CRISPR/Cas9 gene editing of autosomal-dominant <i>ELANE</i> mutations in CD34<sup>+</sup> cells from two CN patients head-to-head. We tested universal and allele-specific <i>ELANE</i> knockout, <i>ELANE</i> mutation correction by homology-directed repair (HDR) with AAV6, and allele-specific HDR with ssODN. All strategies were not toxic, had at least 30% editing, and rescued granulopoiesis <i>in vitro</i>. In contrast to published data, allele-specific indels in the last exon of <i>ELANE</i> also restored granulopoiesis. Moreover, by implementing patient-derived induced pluripotent stem cells for GUIDE-Seq off-target analysis, we established a clinically relevant \"personalized\" assessment of off-target activity of gene editing on the background of the patient's genome. We found that allele-specific approaches had the most favorable off-target profiles. Taken together, a well-defined head-to-head comparison pipeline for selecting the appropriate gene therapy is essential for diseases, with several gene editing strategies available.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"258-271"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Give Cas a Chance: An Actionable Path to a Platform for CRISPR Cures. 给 Cas 一个机会:通往 CRISPR 治疗平台的可行之路。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.0082
Fyodor D Urnov
{"title":"Give Cas a Chance: An Actionable Path to a Platform for CRISPR Cures.","authors":"Fyodor D Urnov","doi":"10.1089/crispr.2024.0082","DOIUrl":"10.1089/crispr.2024.0082","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"212-219"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480629","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Affordable Pricing of CRISPR Treatments is a Pressing Ethical Imperative. CRISPR 治疗的平价化是迫在眉睫的伦理当务之急。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 Epub Date: 2024-10-10 DOI: 10.1089/crispr.2024.0042
Jon Rueda, Íñigo de Miguel Beriain, Lluis Montoliu
{"title":"Affordable Pricing of CRISPR Treatments is a Pressing Ethical Imperative.","authors":"Jon Rueda, Íñigo de Miguel Beriain, Lluis Montoliu","doi":"10.1089/crispr.2024.0042","DOIUrl":"10.1089/crispr.2024.0042","url":null,"abstract":"<p><p>Casgevy, the world's first approved CRISPR-based cell therapy, has been priced at $2.2 million per patient. Although this hefty price tag was widely anticipated, the extremely high cost of this and other cell and gene therapies poses a major ethical issue in terms of equitable access and global health. In this Perspective, we argue that lowering the prices of future CRISPR therapies is an urgent ethical imperative. Although we focus on Casgevy as a case study, much of our analysis can be extrapolated to the controversies over affordable access to other gene and cell therapies. First, we explain why this first-of-its-kind CRISPR therapy might be so expensive. We then analyze the ethical issues of equity and global health of early CRISPR treatments. Next, we discuss potential solutions to lower the prices of CRISPR gene therapies. We conclude that the approval of CRISPR transforms our obligations of justice and compels us to bring future gene therapies to the maximum possible number of patients with serious genetic diseases at affordable prices.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"220-226"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142401956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for The CRISPR Journal. 罗莎琳德-富兰克林学会自豪地宣布《CRISPR 期刊》2023 年度获奖者。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.55675.rfs2023
Suchita Nety
{"title":"Rosalind Franklin Society Proudly Announces the 2023 Award Recipient for <i>The CRISPR Journal</i>.","authors":"Suchita Nety","doi":"10.1089/crispr.2024.55675.rfs2023","DOIUrl":"https://doi.org/10.1089/crispr.2024.55675.rfs2023","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"211"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enrichment of Allelic Editing Outcomes by Prime Editing in Induced Pluripotent Stem Cells. 通过在诱导多能干细胞中进行基质编辑,丰富等位基因编辑结果。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.0028
Ryo Niwa, Tomoko Matsumoto, Alexander Y Liu, Maki Kawato, Takayuki Kondo, Kayoko Tsukita, Peter Gee, Haruhisa Inoue, Thomas L Maurissen, Knut Woltjen
{"title":"Enrichment of Allelic Editing Outcomes by Prime Editing in Induced Pluripotent Stem Cells.","authors":"Ryo Niwa, Tomoko Matsumoto, Alexander Y Liu, Maki Kawato, Takayuki Kondo, Kayoko Tsukita, Peter Gee, Haruhisa Inoue, Thomas L Maurissen, Knut Woltjen","doi":"10.1089/crispr.2024.0028","DOIUrl":"10.1089/crispr.2024.0028","url":null,"abstract":"<p><p>Gene editing in human induced pluripotent stem (iPS) cells with programmable nucleases facilitates reliable disease models, but methods using double-strand break repair often produce random on-target by-products. Prime editing (PE) combines Cas9 nickase with reverse transcriptase and PE guide RNA (pegRNA) encoding a repair template to reduce by-products. We implemented a GMP-compatible protocol for transfecting Cas9- or PE-2A-mCherry plasmids to track and fractionate human iPS cells based on PE expression level. We compared the editing outcomes of Cas9- and PE-based methods in a GFP-to-BFP conversion assay at the <i>HEK3</i> benchmark locus and at the <i>APOE</i> Alzheimer's risk locus, revealing superior precision of PE at high expression levels. Moreover, sorting cells for PE expression level influenced allelic editing outcomes at the target loci. We expect that our findings will aid in the creation of gene-edited human iPS cells with intentional heterozygous and homozygous genotypes.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"293-304"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Widespread Impact of Natural Genetic Variations in CRISPR-Cas9 Outcomes. 自然基因变异对 CRISPR-Cas9 结果的广泛影响。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-10-01 DOI: 10.1089/crispr.2024.0020
Victoria R Li, Tinghui Wu, Alicja Tadych, Aaron Wong, Zijun Zhang
{"title":"Widespread Impact of Natural Genetic Variations in CRISPR-Cas9 Outcomes.","authors":"Victoria R Li, Tinghui Wu, Alicja Tadych, Aaron Wong, Zijun Zhang","doi":"10.1089/crispr.2024.0020","DOIUrl":"10.1089/crispr.2024.0020","url":null,"abstract":"<p><p>The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) is a genome editing tool widely used in biological research and clinical therapeutics. Natural human genetic variations, through altering the sequence context of CRISPR-Cas9 target regions, can significantly affect its DNA repair outcomes and ultimately lead to different editing efficiencies. However, these effects have not been systematically studied, even as CRISPR-Cas9 is broadly applied to primary cells and patient samples that harbor such genetic diversity. Here, we present comprehensive investigations of natural genetic variations on CRISPR-Cas9 outcomes across the human genome. The utility of our analysis is illustrated in two case studies, on both preclinical discoveries of CD33 knockout in chimeric antigen receptor-T cell therapy and clinical applications of transthyretin (TTR) inactivation for treating TTR amyloidosis. We further expand our analysis to genome-scale, population-stratified common variants that may lead to gene editing disparity. Our analyses demonstrate pitfalls of failing to account for the widespread genetic variations in Cas9 target selection and how they can be effectively examined and avoided using our method. To facilitate broad access to our analysis, a web platform CROTONdb is developed, which provides predictions for all possible CRISPR-Cas9 target sites in the coding and noncoding regulatory regions, spanning over 5.38 million guide RNA targets and 90.82 million estimated variant effects. We anticipate CROTONdb having broad clinical utilities in gene and cellular therapies.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 5","pages":"283-292"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142480631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenging the Boundaries Between Treatment, Prevention, and Enhancement in Human Genome Editing. 挑战人类基因组编辑中治疗、预防和增强之间的界限。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-08-01 Epub Date: 2024-07-08 DOI: 10.1089/crispr.2024.0021
Margaret Waltz, Rebecca L Walker, Michael A Flatt, Douglas MacKay, John M Conley, Eric T Juengst, R Jean Cadigan
{"title":"Challenging the Boundaries Between Treatment, Prevention, and Enhancement in Human Genome Editing.","authors":"Margaret Waltz, Rebecca L Walker, Michael A Flatt, Douglas MacKay, John M Conley, Eric T Juengst, R Jean Cadigan","doi":"10.1089/crispr.2024.0021","DOIUrl":"10.1089/crispr.2024.0021","url":null,"abstract":"<p><p>Traditional distinctions between treatment and enhancement goals for human genome editing (HGE) have animated oversight considerations, yet these categories have been complicated by the addition of prevention as a possible target for HGE applications. To assess the role these three categories might play in continued HGE governance efforts, we report on interviews with genome editing scientists and governance group members. While some accepted traditional distinctions between treatment and enhancement and rejected the latter as unacceptable, others argued that the concept of enhancement is largely irrelevant or not as morally problematic as suggested. Others described how preventive goals for HGE create gray zones where prevention and enhancement may be difficult to distinguish, which may stymie uses of HGE. We conclude by discussing the governance implications of these various understandings of treatment, prevention, and enhancement as HGE research moves beyond the treatment of serious disease to embrace longer range preventive goals.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":" ","pages":"180-187"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386990/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141560350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI and SynBio Meet CRISPR Heralding a New Genome Editing Era. 人工智能和 SynBio 与 CRISPR 相遇,预示着一个新的基因组编辑时代的到来。
IF 3.7 4区 生物学
CRISPR Journal Pub Date : 2024-08-01 DOI: 10.1089/crispr.2024.0063
Rodolphe Barrangou
{"title":"AI and SynBio Meet CRISPR Heralding a New Genome Editing Era.","authors":"Rodolphe Barrangou","doi":"10.1089/crispr.2024.0063","DOIUrl":"https://doi.org/10.1089/crispr.2024.0063","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":"7 4","pages":"179"},"PeriodicalIF":3.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信