CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.0006
Allison Sharrar, Luisa Arake de Tacca, Trevor Collingwood, Zuriah Meacham, David Rabuka, Johanna Staples-Ager, Michael Schelle
{"title":"Discovery and Characterization of Novel Type V Cas12f Nucleases with Diverse Protospacer Adjacent Motif Preferences.","authors":"Allison Sharrar, Luisa Arake de Tacca, Trevor Collingwood, Zuriah Meacham, David Rabuka, Johanna Staples-Ager, Michael Schelle","doi":"10.1089/crispr.2023.0006","DOIUrl":"https://doi.org/10.1089/crispr.2023.0006","url":null,"abstract":"<p><p>Small Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR-associated (Cas) effectors are key to developing gene editing therapies due to the packaging constraints of viral vectors. While Cas9 and Cas12a CRISPR-Cas effectors have advanced into select clinical applications, their size is prohibitive for efficient delivery of both nuclease and guide RNA in a single viral vector. Type V Cas12f effectors present a solution given their small size. In this study, we describe a novel set of miniature (<490AA) Cas12f nucleases that cleave double-stranded DNA in human cells. We determined their optimal trans-activating RNA empirically through rational modifications, which resulted in an optimal single guide RNA. We show that these nucleases have broad protospacer adjacent motif (PAM) preferences, allowing for expanded genome targeting. The unique characteristics of these novel nucleases add to the diversity of the miniature CRISPR-Cas toolbox while the expanded PAM allows for the editing of genomic locations that could not be accessed with existing Cas12f nucleases.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10037354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.0016
Juliane Weller, Ananth Pallaseni, Jonas Koeppel, Leopold Parts
{"title":"Predicting Mutations Generated by Cas9, Base Editing, and Prime Editing in Mammalian Cells.","authors":"Juliane Weller, Ananth Pallaseni, Jonas Koeppel, Leopold Parts","doi":"10.1089/crispr.2023.0016","DOIUrl":"https://doi.org/10.1089/crispr.2023.0016","url":null,"abstract":"<p><p>The first fruits of the CRISPR-Cas revolution are starting to enter the clinic, with gene editing therapies offering solutions to previously incurable genetic diseases. The success of such applications hinges on control over the mutations that are generated, which are known to vary depending on the targeted locus. In this review, we present the current state of understanding and predicting CRISPR-Cas cutting, base editing, and prime editing outcomes in mammalian cells. We first provide an introduction to the basics of DNA repair and machine learning that the models rely on. We then overview the datasets and methods created for characterizing edits at scale, as well as the insights that have been derived from them. The predictions generated from these models serve as a foundation for designing efficient experiments across the broad contexts where these tools are applied.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10036531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.29162.rfs2022
Nicole F Brackett
{"title":"Rosalind Franklin Society Proudly Announces the 2022 Award Recipient for <i>The CRISPR Journal</i>.","authors":"Nicole F Brackett","doi":"10.1089/crispr.2023.29162.rfs2022","DOIUrl":"https://doi.org/10.1089/crispr.2023.29162.rfs2022","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10031407","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.29163.editorial
Rodolphe Barrangou
{"title":"CRISPR Milestones for Sustainable Agriculture and Forestry.","authors":"Rodolphe Barrangou","doi":"10.1089/crispr.2023.29163.editorial","DOIUrl":"https://doi.org/10.1089/crispr.2023.29163.editorial","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10041478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2022.0096
Yen-Ho Chen, Shakuntala Sharma, William P Bewg, Liang-Jiao Xue, Cole R Gizelbach, Chung-Jui Tsai
{"title":"Multiplex Editing of the <i>Nucleoredoxin1</i> Tandem Array in Poplar: From Small Indels to Translocations and Complex Inversions.","authors":"Yen-Ho Chen, Shakuntala Sharma, William P Bewg, Liang-Jiao Xue, Cole R Gizelbach, Chung-Jui Tsai","doi":"10.1089/crispr.2022.0096","DOIUrl":"https://doi.org/10.1089/crispr.2022.0096","url":null,"abstract":"<p><p>The CRISPR-Cas9 system has been deployed for precision mutagenesis in an ever-growing number of species, including agricultural crops and forest trees. Its application to closely linked genes with extremely high sequence similarities has been less explored. In this study, we used CRISPR-Cas9 to mutagenize a tandem array of seven <i>Nucleoredoxin1</i> (<i>NRX1</i>) genes spanning ∼100 kb in <i>Populus tremula</i> × <i>Populus alba</i>. We demonstrated efficient multiplex editing with one single guide RNA in 42 transgenic lines. The mutation profiles ranged from small insertions and deletions and local deletions in individual genes to large genomic dropouts and rearrangements spanning tandem genes. We also detected complex rearrangements including translocations and inversions resulting from multiple cleavage and repair events. Target capture sequencing was instrumental for unbiased assessments of repair outcomes to reconstruct unusual mutant alleles. The work highlights the power of CRISPR-Cas9 for multiplex editing of tandemly duplicated genes to generate diverse mutants with structural and copy number variations to aid future functional characterization.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10460964/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10100491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.0007
Gabriel Lamothe, Julie Carbonneau, Charles Joly Beauparlant, Thierry Vincent, Patrik Quessy, Anthony Guedon, Gary Kobinger, Jean-Francois Lemay, Guy Boivin, Arnaud Droit, Nathalie Turgeon, Jacques P Tremblay
{"title":"Rapid and Technically Simple Detection of SARS-CoV-2 Variants Using CRISPR Cas12 and Cas13.","authors":"Gabriel Lamothe, Julie Carbonneau, Charles Joly Beauparlant, Thierry Vincent, Patrik Quessy, Anthony Guedon, Gary Kobinger, Jean-Francois Lemay, Guy Boivin, Arnaud Droit, Nathalie Turgeon, Jacques P Tremblay","doi":"10.1089/crispr.2023.0007","DOIUrl":"https://doi.org/10.1089/crispr.2023.0007","url":null,"abstract":"<p><p>The worldwide proliferation of the SARS-CoV-2 virus in the past 3 years has allowed the virus to accumulate numerous mutations. Dangerous lineages have emerged one after another, each leading to a new wave of the pandemic. In this study, we have developed the THRASOS pipeline to rapidly discover lineage-specific mutation signatures and thus advise the development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based diagnostic tests. We also optimized a strategy to modify loop-mediated isothermal amplification amplicons for downstream use with Cas12 and Cas13 for future multiplexing. The close ancestry of the BA.1 and BA.2 variants of SARS-CoV-2 (Omicron) made these excellent candidates for the development of a first test using this workflow. With a quick turnaround time and low requirements for laboratory equipment, the test we have created is ideally suited for settings such as mobile clinics lacking equipment such as Next-Generation Sequencers or Sanger Sequencers and the personnel to run these devices.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10027205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.0019
Benjamín Durán-Vinet, Karla Araya-Castro, Anastasija Zaiko, Xavier Pochon, Susanna A Wood, Jo-Ann L Stanton, Gert-Jan Jeunen, Michelle Scriver, Anya Kardailsky, Tzu-Chiao Chao, Deependra K Ban, Maryam Moarefian, Kiana Aran, Neil J Gemmell
{"title":"CRISPR-Cas-Based Biomonitoring for Marine Environments: Toward CRISPR RNA Design Optimization Via Deep Learning.","authors":"Benjamín Durán-Vinet, Karla Araya-Castro, Anastasija Zaiko, Xavier Pochon, Susanna A Wood, Jo-Ann L Stanton, Gert-Jan Jeunen, Michelle Scriver, Anya Kardailsky, Tzu-Chiao Chao, Deependra K Ban, Maryam Moarefian, Kiana Aran, Neil J Gemmell","doi":"10.1089/crispr.2023.0019","DOIUrl":"https://doi.org/10.1089/crispr.2023.0019","url":null,"abstract":"<p><p>Almost all of Earth's oceans are now impacted by multiple anthropogenic stressors, including the spread of nonindigenous species, harmful algal blooms, and pathogens. Early detection is critical to manage these stressors effectively and to protect marine systems and the ecosystem services they provide. Molecular tools have emerged as a promising solution for marine biomonitoring. One of the latest advancements involves utilizing CRISPR-Cas technology to build programmable, rapid, ultrasensitive, and specific diagnostics. CRISPR-based diagnostics (CRISPR-Dx) has the potential to allow robust, reliable, and cost-effective biomonitoring in near real time. However, several challenges must be overcome before CRISPR-Dx can be established as a mainstream tool for marine biomonitoring. A critical unmet challenge is the need to design, optimize, and experimentally validate CRISPR-Dx assays. Artificial intelligence has recently been presented as a potential approach to tackle this challenge. This perspective synthesizes recent advances in CRISPR-Dx and machine learning modeling approaches, showcasing CRISPR-Dx potential to progress as a rising molecular tool candidate for marine biomonitoring applications.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10494903/pdf/crispr.2023.0019.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10220671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2023.29165.mwi
Matthew R Willmann
{"title":"CRISPR and the Plant Pathologists' Holy Grail.","authors":"Matthew R Willmann","doi":"10.1089/crispr.2023.29165.mwi","DOIUrl":"https://doi.org/10.1089/crispr.2023.29165.mwi","url":null,"abstract":"","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10039496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CRISPR JournalPub Date : 2023-08-01DOI: 10.1089/crispr.2022.0080
Alan J Collins, Rachel J Whitaker
{"title":"CRISPR Comparison Toolkit: Rapid Identification, Visualization, and Analysis of CRISPR Array Diversity.","authors":"Alan J Collins, Rachel J Whitaker","doi":"10.1089/crispr.2022.0080","DOIUrl":"https://doi.org/10.1089/crispr.2022.0080","url":null,"abstract":"<p><p>CRISPR-Cas systems provide immunity against mobile genetic elements (MGEs) through sequence-specific targeting by spacer sequences encoded in CRISPR arrays. Spacers are highly variable between microbial strains and can be acquired rapidly, making them well suited for use in strain typing of closely related organisms. However, no tools are currently available to automate the process of reconstructing strain histories using CRISPR spacers. We therefore developed the CRISPR Comparison Toolkit (CCTK) to enable analyses of array relationships. The CCTK includes tools to identify arrays, analyze relationships between arrays using CRISPRdiff and CRISPRtree, and predict targets of spacers. CRISPRdiff visualizes arrays and highlights the similarities between them. CRISPRtree infers a phylogenetic tree from array relationships and presents a hypothesis of the evolutionary history of the arrays. The CCTK unifies several CRISPR analysis tools into a single command line application, including the first tool to infer phylogenies from array relationships.</p>","PeriodicalId":54232,"journal":{"name":"CRISPR Journal","volume":null,"pages":null},"PeriodicalIF":3.7,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10101209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}