X. F. Li, S. M. Weng, P. Gibbon, H. H. Ma, S. H. Yew, Z. Liu, Y. Zhao, M. Chen, Z. M. Sheng, J. Zhang
{"title":"Transition from backward to sideward stimulated Raman scattering with broadband lasers in plasmas","authors":"X. F. Li, S. M. Weng, P. Gibbon, H. H. Ma, S. H. Yew, Z. Liu, Y. Zhao, M. Chen, Z. M. Sheng, J. Zhang","doi":"10.1063/5.0152668","DOIUrl":"https://doi.org/10.1063/5.0152668","url":null,"abstract":"Broadband lasers have been proposed as future drivers of inertial confined fusion (ICF) to enhance the laser–target coupling efficiency via the mitigation of various parametric instabilities. The physical mechanisms involved have been explored recently, but are not yet fully understood. Here, stimulated Raman scattering (SRS) as one of the key parametric instabilities is investigated theoretically and numerically for a broadband laser propagating in homogeneous plasma in multidimensional geometry. The linear SRS growth rate is derived as a function of scattering angles for two monochromatic laser beams with a fixed frequency difference δω. If δω/ω0 ∼ 1%, with ω0 the laser frequency, these two laser beams may be decoupled in stimulating backward SRS while remaining coupled for sideward SRS at the laser intensities typical for ICF. Consequently, side-scattering may dominate over backward SRS for two-color laser light. This finding of SRS transition from backward to sideward SRS is then generalized for a broadband laser with a few-percent bandwidth. Particle-in-cell simulations demonstrate that with increasing laser bandwidth, the sideward SRS gradually becomes dominant over the backward SRS. Since sideward SRS is very efficient in producing harmful hot electrons, attention needs to be paid on this effect if ultra-broadband lasers are considered as next-generation ICF drivers.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135733687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Feng Wan, Chong Lv, Kun Xue, Zhen-Ke Dou, Qian Zhao, Mamutjan Ababekri, Wen-Qing Wei, Zhong-Peng Li, Yong-Tao Zhao, Jian-Xing Li
{"title":"Simulations of spin/polarization-resolved laser–plasma interactions in the nonlinear QED regime","authors":"Feng Wan, Chong Lv, Kun Xue, Zhen-Ke Dou, Qian Zhao, Mamutjan Ababekri, Wen-Qing Wei, Zhong-Peng Li, Yong-Tao Zhao, Jian-Xing Li","doi":"10.1063/5.0163929","DOIUrl":"https://doi.org/10.1063/5.0163929","url":null,"abstract":"Strong-field quantum electrodynamics (SF-QED) plays a crucial role in ultraintense laser–matter interactions and demands sophisticated techniques to understand the related physics with new degrees of freedom, including spin angular momentum. To investigate the impact of SF-QED processes, we have introduced spin/polarization-resolved nonlinear Compton scattering, nonlinear Breit–Wheeler, and vacuum birefringence processes into our particle-in-cell (PIC) code. In this article, we provide details of the implementation of these SF-QED modules and share known results that demonstrate exact agreement with existing single-particle codes. By coupling normal PIC simulations with spin/polarization-resolved SF-QED processes, we create a new theoretical platform to study strong-field physics in currently running or planned petawatt or multi-petawatt laser facilities.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134989469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko, R. Dudzak, P. Koester, G. Zeraouli, D. Mancelli, F. Baffigi, L. A. Gizzi, S. A. Pikuz, Ph.D. Nicolaï, N. C. Woolsey, R. Fedosejevs, M. Krus, L. Juha, D. Batani, O. Renner, G. Cristoforetti
{"title":"Characterization of hot electrons generated by laser–plasma interaction at shock ignition intensities","authors":"E. D. Filippov, M. Khan, A. Tentori, P. Gajdos, A. S. Martynenko, R. Dudzak, P. Koester, G. Zeraouli, D. Mancelli, F. Baffigi, L. A. Gizzi, S. A. Pikuz, Ph.D. Nicolaï, N. C. Woolsey, R. Fedosejevs, M. Krus, L. Juha, D. Batani, O. Renner, G. Cristoforetti","doi":"10.1063/5.0157168","DOIUrl":"https://doi.org/10.1063/5.0157168","url":null,"abstract":"In an experiment carried out at the Prague Asterix Laser System at laser intensities relevant to shock ignition conditions (I > 1016 W/cm2), the heating and transport of hot electrons were studied by using several complementary diagnostics, i.e., Kα time-resolved imaging, hard x-ray filtering (a bremsstrahlung cannon), and electron spectroscopy. Ablators with differing composition from low Z (parylene N) to high Z (nickel) were used in multilayer planar targets to produce plasmas with different coronal temperature and collisionality and modify the conditions of hot-electron generation. The variety of available diagnostics allowed full characterization of the population of hot electrons, retrieving their conversion efficiency, time generation and duration, temperature, and angular divergence. The obtained results are shown to be consistent with those from detailed simulations and similar inertial confinement fusion experiments. Based on the measured data, the advantages, reliability, and complementarity of the experimental diagnostics are discussed.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135734617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, F. Tian, D. Duan
{"title":"A fresh class of superconducting and hard pentaborides","authors":"Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, F. Tian, D. Duan","doi":"10.1063/5.0157250","DOIUrl":"https://doi.org/10.1063/5.0157250","url":null,"abstract":"On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions, numerous studies have been conducted with the aim of developing superconducting materials with favorable mechanical properties using boron-rich compounds. In this paper, first-principles calculations reveal the existence of an unprecedented family of tetragonal pentaborides MB5 (M = Na, K, Rb, Ca, Sr, Ba, Sc, and Y), comprising B20 cages and centered metal atoms acting as stabilizers and electron donors to the boron sublattice. These compounds exhibit both superconductivity and high hardness, with the maximum superconducting transition temperature Tc of 18.6 K being achieved in RbB5 and the peak Vickers hardness Hv of 35.1 GPa being achieved in KB5 at 1 atm. The combination of these properties is particularly evident in KB5, RbB5, and BaB5, with Tc values of ∼14.7, 18.6, and 16.3 K and Hv values of ∼35.1, 32.4, and 33.8 GPa, respectively. The results presented here reveal that pentaborides can provide a framework for exploring and designing novel superconducting materials with favorable hardness at achievable pressures and even under ambient conditions.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"8 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82308141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum splitting of electron peaks in ultra-strong fields","authors":"Bo Zhang, Zhi-Meng Zhang, Wei-Min Zhou","doi":"10.1063/5.0157663","DOIUrl":"https://doi.org/10.1063/5.0157663","url":null,"abstract":"Effects of multiple nonlinear Compton scattering on electrons in ultra-strong fields are described using analytic formulas similar to those in the theory of multiple bremsstrahlung. Based on these analytic formulas, a new pure quantum effect of multiple nonlinear Compton scattering called quantum peak splitting is identified: the electron peak splits into two when the average number of nonlinear Compton scatterings per electron passes a threshold of 5.1 and is below 9. Quantum peak splitting stems from the discreteness of quantum radiation reaction, with one of the split peaks being formed by electrons emitting zero to three times and the other by electrons emitting four or more times. This effect provides a new mechanism for the formation of electron peaks, imposes a new beamstrahlung limit on future colliders, and corrects the picture of quantum radiation reaction. Experiments can be performed on lasers with intensities ≳1021 W/cm2, which are reachable on PW-scale facilities.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"84 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87011371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ming Chen, Yang Lu, Jiahao Ning, Wenge Yang, J. Shu, Ho-Kwang Mao
{"title":"Discovery of the Baijifeng impact structure in Tonghua, Jilin, China","authors":"Ming Chen, Yang Lu, Jiahao Ning, Wenge Yang, J. Shu, Ho-Kwang Mao","doi":"10.1063/5.0172186","DOIUrl":"https://doi.org/10.1063/5.0172186","url":null,"abstract":"An impact structure 1400 m in diameter, formed by a bolide impact, has been discovered on Baijifeng Mountain in Tonghua City in Northeast China’s Jilin province. The impact structure takes the form of a cirque-shaped depression on the top of the mountain and is located in a basement mainly composed of Proterozoic sandstone and Jurassic granite. A large number of rock fragments composed mainly of sandstone, with a small amount of granite, are distributed on the top of Baijifeng Mountain. Planar deformation features (PDFs) have been found in quartz in the rock and mineral clasts collected from the surface inside the depression. The forms of the PDFs indexed in the quartz include among others, {101̄3}, {101̄2}, and {101̄1}. The presence of these PDFs provides diagnostic evidence for shock metamorphism and the impact origin of the structure. The impact event took place after the Jurassic Period and probably much later.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"76 ","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72425146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laser-driven electrodynamic implosion of fast ions in a thin shell","authors":"S. Gus’kov, P. Korneev, M. Murakami","doi":"10.1063/5.0156113","DOIUrl":"https://doi.org/10.1063/5.0156113","url":null,"abstract":"Collision of laser-driven subrelativistic high-density ion flows provides a way to create extremely compressed ion conglomerates and study their properties. This paper presents a theoretical study of the electrodynamic implosion of ions inside a hollow spherical or cylindrical shell irradiated by femtosecond petawatt laser pulses. We propose to apply a very effective mechanism for ion acceleration in a self-consistent field with strong charge separation, based on the oscillation of laser-accelerated fast electrons in this field near the thin shell. Fast electrons are generated on the outer side of the shell under irradiation by the intense laser pulses. It is shown that ions, in particular protons, may be accelerated at the implosion stage to energies of tens and hundreds of MeV when a sub-micrometer shell is irradiated by femtosecond laser pulses with an intensity of 1021–1023 W cm−2.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"61 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78150929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Suppressing stimulated Raman side-scattering with vector light","authors":"Xiaobao Jia, Q. Jia, R. Yan, Jian Zheng","doi":"10.1063/5.0157811","DOIUrl":"https://doi.org/10.1063/5.0157811","url":null,"abstract":"Recent observations of stimulated Raman side-scattering (SRSS) in different laser inertial confinement fusion ignition schemes have revealed that there is an underlying risk of SRSS on ignition. In this paper, we propose a method that uses the nonuniform nature of the polarization of vector light to suppress SRSS, and we give an additional threshold condition determined by the parameters of the vector light. For SRSS at 90°, where the scattered electromagnetic wave travels perpendicular to the density profile, the variation in polarization of the pump will change the wave vector of the scattered light, thereby reducing the growth length and preventing the scattered electromagnetic wave from growing. This suppression scheme is verified through three-dimensional particle-in-cell simulations. Our illustrative simulation results demonstrate that for linearly polarized Gaussian light, there is a strong SRSS signal in the 90° direction, whereas for vector light, there is very little SRSS signal, even when the conditions significantly exceed the threshold for SRSS. We also discuss the impact of vector light on stimulated Raman backscattering, collective stimulated Brillouin scattering and two-plasmon decay.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"35 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75768114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xingyu Tang, Xiao Dong, Chunfang Zhang, Kuo Li, Haiyan Zheng, H. Mao
{"title":"Triggering dynamics of acetylene topochemical polymerization","authors":"Xingyu Tang, Xiao Dong, Chunfang Zhang, Kuo Li, Haiyan Zheng, H. Mao","doi":"10.1063/5.0151609","DOIUrl":"https://doi.org/10.1063/5.0151609","url":null,"abstract":"Topochemical reactions are a promising method to obtain crystalline polymeric materials with distance-determined regio- or stereoselectivity. It has been concluded on an empirical basis that the closest intermolecular C⋯C distance in crystals of alkynes, d(C⋯C)min, should reach a threshold of ∼3 Å for bonding to occur at room temperature. To understand this empirical threshold, we study here the polymerization of acetylene in the crystalline state under high pressure by calculating the structural geometry, vibrational modes, and reaction profile. We find d(C⋯C)min to be the sum of an intrinsic threshold of 2.3 Å and a thermal displacement of 0.8 Å (at room temperature). Molecules at the empirical threshold move via several phonon modes to reach the intrinsic threshold, at which the intermolecular electronic interaction is sharply enhanced and bonding commences. A distance–vibration-based reaction picture is thus demonstrated, which provides a basis for the prediction and design of topochemical reactions, as well as an enhanced understanding of the bonding process in solids.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"69 1","pages":""},"PeriodicalIF":5.1,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79681771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Di Peng, Qiaoshi Zeng, Fujun Lan, Zhenfang Xing, Yang Ding, Ho-kwang Mao
{"title":"The near-room-temperature upsurge of electrical resistivity in Lu-H-N is not superconductivity, but a metal-to-poor-conductor transition","authors":"Di Peng, Qiaoshi Zeng, Fujun Lan, Zhenfang Xing, Yang Ding, Ho-kwang Mao","doi":"10.1063/5.0166430","DOIUrl":"https://doi.org/10.1063/5.0166430","url":null,"abstract":"The recent report of superconductivity in nitrogen-doped lutetium hydride (Lu-H-N) at 294 K and 1 GPa brought hope for long-sought-after ambient-condition superconductors. However, the failure of scientists worldwide to independently reproduce these results has cast intense skepticism on this exciting claim. In this work, using a reliable experimental protocol, we synthesized Lu-H-N while minimizing extrinsic influences and reproduced the sudden change in resistance near room temperature. With quantitative comparison of the temperature-dependent resistance between Lu-H-N and the pure lutetium before reaction, we were able to clarify that the drastic resistance change is most likely caused by a metal-to-poor-conductor transition rather than by superconductivity. Herein, we also briefly discuss other issues recently raised in relation to the Lu-H-N system.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134919896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}