A fresh class of superconducting and hard pentaborides

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, F. Tian, D. Duan
{"title":"A fresh class of superconducting and hard pentaborides","authors":"Hui Xie, Hong Wang, Fang Qin, Wei Han, Suxin Wang, Youchun Wang, F. Tian, D. Duan","doi":"10.1063/5.0157250","DOIUrl":null,"url":null,"abstract":"On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions, numerous studies have been conducted with the aim of developing superconducting materials with favorable mechanical properties using boron-rich compounds. In this paper, first-principles calculations reveal the existence of an unprecedented family of tetragonal pentaborides MB5 (M = Na, K, Rb, Ca, Sr, Ba, Sc, and Y), comprising B20 cages and centered metal atoms acting as stabilizers and electron donors to the boron sublattice. These compounds exhibit both superconductivity and high hardness, with the maximum superconducting transition temperature Tc of 18.6 K being achieved in RbB5 and the peak Vickers hardness Hv of 35.1 GPa being achieved in KB5 at 1 atm. The combination of these properties is particularly evident in KB5, RbB5, and BaB5, with Tc values of ∼14.7, 18.6, and 16.3 K and Hv values of ∼35.1, 32.4, and 33.8 GPa, respectively. The results presented here reveal that pentaborides can provide a framework for exploring and designing novel superconducting materials with favorable hardness at achievable pressures and even under ambient conditions.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"8 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0157250","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

On the basis of the current theoretical understanding of boron-based hard superconductors under ambient conditions, numerous studies have been conducted with the aim of developing superconducting materials with favorable mechanical properties using boron-rich compounds. In this paper, first-principles calculations reveal the existence of an unprecedented family of tetragonal pentaborides MB5 (M = Na, K, Rb, Ca, Sr, Ba, Sc, and Y), comprising B20 cages and centered metal atoms acting as stabilizers and electron donors to the boron sublattice. These compounds exhibit both superconductivity and high hardness, with the maximum superconducting transition temperature Tc of 18.6 K being achieved in RbB5 and the peak Vickers hardness Hv of 35.1 GPa being achieved in KB5 at 1 atm. The combination of these properties is particularly evident in KB5, RbB5, and BaB5, with Tc values of ∼14.7, 18.6, and 16.3 K and Hv values of ∼35.1, 32.4, and 33.8 GPa, respectively. The results presented here reveal that pentaborides can provide a framework for exploring and designing novel superconducting materials with favorable hardness at achievable pressures and even under ambient conditions.
一类新的超导硬五硼化物
基于目前对环境条件下硼基硬超导体的理论认识,人们进行了大量的研究,目的是利用富硼化合物开发具有良好力学性能的超导材料。在本文中,第一性原理计算揭示了一个前所未有的四方五硼化物家族MB5 (M = Na, K, Rb, Ca, Sr, Ba, Sc和Y)的存在,包括B20笼和中心金属原子作为稳定剂和硼亚晶格的电子供体。这些化合物既具有超导性又具有高硬度,在1atm下,RbB5的最高超导转变温度Tc为18.6 K, KB5的峰值维氏硬度Hv为35.1 GPa。这些特性的结合在KB5、RbB5和BaB5中尤为明显,Tc值分别为~ 14.7、18.6和16.3 K, Hv值分别为~ 35.1、32.4和33.8 GPa。本文的研究结果表明,五硼化物可以为探索和设计在可达到的压力下甚至在环境条件下具有良好硬度的新型超导材料提供框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信