乙炔拓扑化学聚合的触发动力学

IF 4.8 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Xingyu Tang, Xiao Dong, Chunfang Zhang, Kuo Li, Haiyan Zheng, H. Mao
{"title":"乙炔拓扑化学聚合的触发动力学","authors":"Xingyu Tang, Xiao Dong, Chunfang Zhang, Kuo Li, Haiyan Zheng, H. Mao","doi":"10.1063/5.0151609","DOIUrl":null,"url":null,"abstract":"Topochemical reactions are a promising method to obtain crystalline polymeric materials with distance-determined regio- or stereoselectivity. It has been concluded on an empirical basis that the closest intermolecular C⋯C distance in crystals of alkynes, d(C⋯C)min, should reach a threshold of ∼3 Å for bonding to occur at room temperature. To understand this empirical threshold, we study here the polymerization of acetylene in the crystalline state under high pressure by calculating the structural geometry, vibrational modes, and reaction profile. We find d(C⋯C)min to be the sum of an intrinsic threshold of 2.3 Å and a thermal displacement of 0.8 Å (at room temperature). Molecules at the empirical threshold move via several phonon modes to reach the intrinsic threshold, at which the intermolecular electronic interaction is sharply enhanced and bonding commences. A distance–vibration-based reaction picture is thus demonstrated, which provides a basis for the prediction and design of topochemical reactions, as well as an enhanced understanding of the bonding process in solids.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"69 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triggering dynamics of acetylene topochemical polymerization\",\"authors\":\"Xingyu Tang, Xiao Dong, Chunfang Zhang, Kuo Li, Haiyan Zheng, H. Mao\",\"doi\":\"10.1063/5.0151609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topochemical reactions are a promising method to obtain crystalline polymeric materials with distance-determined regio- or stereoselectivity. It has been concluded on an empirical basis that the closest intermolecular C⋯C distance in crystals of alkynes, d(C⋯C)min, should reach a threshold of ∼3 Å for bonding to occur at room temperature. To understand this empirical threshold, we study here the polymerization of acetylene in the crystalline state under high pressure by calculating the structural geometry, vibrational modes, and reaction profile. We find d(C⋯C)min to be the sum of an intrinsic threshold of 2.3 Å and a thermal displacement of 0.8 Å (at room temperature). Molecules at the empirical threshold move via several phonon modes to reach the intrinsic threshold, at which the intermolecular electronic interaction is sharply enhanced and bonding commences. A distance–vibration-based reaction picture is thus demonstrated, which provides a basis for the prediction and design of topochemical reactions, as well as an enhanced understanding of the bonding process in solids.\",\"PeriodicalId\":54221,\"journal\":{\"name\":\"Matter and Radiation at Extremes\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter and Radiation at Extremes\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0151609\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0151609","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

拓扑化学反应是一种很有前途的方法来获得晶体聚合物材料具有距离决定的区域或立体选择性。在经验基础上得出结论,炔晶体中最接近的分子间C⋯C距离d(C⋯C)min,应达到在室温下发生键合的阈值~ 3 Å。为了理解这个经验阈值,我们通过计算结构几何、振动模式和反应谱,研究了乙炔在高压下的结晶态聚合。我们发现d(C⋯C)min是固有阈值2.3 Å和热位移0.8 Å(室温下)的总和。在经验阈值处的分子通过几个声子模式移动以达到本征阈值,在这个阈值处分子间的电子相互作用急剧增强并开始成键。从而展示了基于距离振动的反应图,为拓扑化学反应的预测和设计提供了基础,并增强了对固体中键合过程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Triggering dynamics of acetylene topochemical polymerization
Topochemical reactions are a promising method to obtain crystalline polymeric materials with distance-determined regio- or stereoselectivity. It has been concluded on an empirical basis that the closest intermolecular C⋯C distance in crystals of alkynes, d(C⋯C)min, should reach a threshold of ∼3 Å for bonding to occur at room temperature. To understand this empirical threshold, we study here the polymerization of acetylene in the crystalline state under high pressure by calculating the structural geometry, vibrational modes, and reaction profile. We find d(C⋯C)min to be the sum of an intrinsic threshold of 2.3 Å and a thermal displacement of 0.8 Å (at room temperature). Molecules at the empirical threshold move via several phonon modes to reach the intrinsic threshold, at which the intermolecular electronic interaction is sharply enhanced and bonding commences. A distance–vibration-based reaction picture is thus demonstrated, which provides a basis for the prediction and design of topochemical reactions, as well as an enhanced understanding of the bonding process in solids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matter and Radiation at Extremes
Matter and Radiation at Extremes Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
8.60
自引率
9.80%
发文量
160
审稿时长
15 weeks
期刊介绍: Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信