Proceedings of the Vldb Endowment最新文献

筛选
英文 中文
Lynx: A Graph Query Framework for Multiple Heterogeneous Data Sources Lynx:面向多个异构数据源的图形查询框架
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611587
Zhihong Shen, Chuan Hu, Zihao Zhao
{"title":"Lynx: A Graph Query Framework for Multiple Heterogeneous Data Sources","authors":"Zhihong Shen, Chuan Hu, Zihao Zhao","doi":"10.14778/3611540.3611587","DOIUrl":"https://doi.org/10.14778/3611540.3611587","url":null,"abstract":"Graph model are increasingly popular among modern applications for its ability to model complex relationships between entities. Users tend to query the data as a graph with graph operations (e.g., graph navigation and exploration). However, a large fraction of the data resides in relational databases or other storage systems. Challenges arise in uniformly querying multiple heterogeneous data sources as a graph. Traditional solutions are limited by time-consuming data integration, expensive development effort, and incomplete query requirements. Thus, we developed Lynx, a general graph query framework, to simplify querying graph data by converting complex statements into basic graph operations. Instead of connecting directly to the data sources, Lynx retrieves data through user-implemented interfaces for those graph operations. We demonstrate Lynx's capabilities through real-world scenarios, showcasing Lynx's ability to process graph queries on multiple heterogeneous data sources and also to be used as a generic graph query engine development framework.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MINT: Detecting Fraudulent Behaviors from Time-Series Relational Data MINT:从时间序列关系数据中检测欺诈行为
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611551
Fei Xiao, Yuncheng Wu, Meihui Zhang, Gang Chen, Beng Chin Ooi
{"title":"MINT: Detecting Fraudulent Behaviors from Time-Series Relational Data","authors":"Fei Xiao, Yuncheng Wu, Meihui Zhang, Gang Chen, Beng Chin Ooi","doi":"10.14778/3611540.3611551","DOIUrl":"https://doi.org/10.14778/3611540.3611551","url":null,"abstract":"The e-commerce platforms, such as Shopee, have accumulated a huge volume of time-series relational data, which contains useful information on differentiating fraud users from benign users. Existing fraud behavior detection approaches typically model the time-series data with a vanilla Recurrent Neural Network (RNN) or combine the whole sequence as a single intention without considering the temporal behavioral patterns, row-level interactions, and different view intentions. In this paper, we present MINT, a M ultiview row- IN teractive T ime-aware framework to detect fraudulent behaviors from time-series structured data. The key idea of MINT is to build a time-aware behavior graph for each user's time-series relational data with each row represented as an action node. We utilize the user's temporal information to construct three different graph convolutional matrices for hierarchically learning the user's intentions from different views, that is, short-term, medium-term, and long-term intentions. To capture more meaningful row-level interactions and alleviate the over-smoothing issue in a vanilla time-aware behavior graph, we propose a novel gated neighbor interaction mechanism to calibrate the aggregated information by each action node. Since the receptive fields of the three graph convolutional layers are designed to grow nearly exponentially, our MINT requires many fewer layers than traditional deep graph neural networks (GNNs) to capture multi-hop neighboring information, and avoids recurrent feedforward propagation, thus leading to higher training efficiency and scalability. Our extensive experiments on the large-scale e-commerce datasets from Shopee with up to 4.6 billion records and a public dataset from Amazon show that MINT achieves superior performance over 10 state-of-the-art models and provides better interpretability and scalability.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Interpretable Clustering of Multivariate Time Series with Time2Feat 基于Time2Feat的多元时间序列可解释聚类
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611604
Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, Donato Tiano
{"title":"Interpretable Clustering of Multivariate Time Series with Time2Feat","authors":"Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, Donato Tiano","doi":"10.14778/3611540.3611604","DOIUrl":"https://doi.org/10.14778/3611540.3611604","url":null,"abstract":"This paper showcases Time2Feat, an end-to-end machine learning system for Multivariate Time Series (MTS) clustering. The system relies on interpretable inter-signal and intra-signal features extracted from the time series. Then, a dimensionality reduction technique is applied to select a subset of features that retain most of the information, thus enhancing the interpretability of the results. In addition, the system enables domain specialists to semi-supervise the process by submitting a small collection of MTS with a target cluster. This process further improves both accuracy and interpretability, by reducing the number of features used by the clustering process. The demonstration shows the application of Time2Feat to various MTS datasets, by creating clusters from MTS datasets of interest, experimenting with different settings and using the approach capabilities to interpret the clusters generated.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DuckPGQ: Bringing SQL/PGQ to DuckDB DuckPGQ:将SQL/PGQ引入DuckDB
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611614
Daniel ten Wolde, Gábor Szárnyas, Peter Boncz
{"title":"DuckPGQ: Bringing SQL/PGQ to DuckDB","authors":"Daniel ten Wolde, Gábor Szárnyas, Peter Boncz","doi":"10.14778/3611540.3611614","DOIUrl":"https://doi.org/10.14778/3611540.3611614","url":null,"abstract":"We demonstrate the most important new feature of SQL:2023, namely SQL/PGQ, which eases querying graphs using SQL by introducing new syntax for pattern matching and (shortest) path-finding. We show how support for SQL/PGQ can be integrated into an RDBMS, specifically in the DuckDB system, using an extension module called DuckPGQ. As such, we also demonstrate the use of the DuckDB extensibility mechanism, which allows us to add new functions, data types, operators, optimizer rules, storage systems, and even parsers to DuckDB. We also describe the new data structures and algorithms that the DuckPGQ module is based on, and how they are injected into SQL plans. While the demonstrated DuckPGQ extension module is lean and efficient, we sketch a roadmap to (i) improve its performance through new algorithms (factorized and WCOJ) and better parallelism and (ii) extend its functionality to scenarios beyond SQL, e.g., building and analyzing Graph Neural Networks.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ScalarDB: Universal Transaction Manager for Polystores 用于polystore的通用事务管理器
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611563
Hiroyuki Yamada, Toshihiro Suzuki, Yuji Ito, Jun Nemoto
{"title":"ScalarDB: Universal Transaction Manager for Polystores","authors":"Hiroyuki Yamada, Toshihiro Suzuki, Yuji Ito, Jun Nemoto","doi":"10.14778/3611540.3611563","DOIUrl":"https://doi.org/10.14778/3611540.3611563","url":null,"abstract":"This paper presents ScalarDB, a universal transaction manager that achieves distributed transactions across multiple disparate databases. ScalarDB provides a database-agnostic transaction manager on top of its database abstraction; thus, it achieves transactions spanning various databases without depending on the transactional capability of underlying databases. ScalarDB is based on several research works and extended to provide a strong correctness guarantee (i.e., strict serializability), further performance optimizations, and several critical mechanisms for productization. In this paper, we describe the design and implementation of ScalarDB. We also present evaluation results showing that ScalarDB achieves database-spanning transactions with reasonable performance and near-linear scalability without sacrificing correctness. Finally, we share some case studies and lessons learned while building and running ScalarDB.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Lindorm TSDB: A Cloud-Native Time-Series Database for Large-Scale Monitoring Systems Lindorm TSDB:用于大规模监控系统的云原生时间序列数据库
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611559
Chunhui Shen, Qianyu Ouyang, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou, Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen, Hanbang Zheng, Lunfan Xu, Sicheng Pan, Bin Wu, Xiao He, Ye Li, Jian Tan, Sheng Wang, Dan Pei, Wei Zhang, Feifei Li
{"title":"Lindorm TSDB: A Cloud-Native Time-Series Database for Large-Scale Monitoring Systems","authors":"Chunhui Shen, Qianyu Ouyang, Feibo Li, Zhipeng Liu, Longcheng Zhu, Yujie Zou, Qing Su, Tianhuan Yu, Yi Yi, Jianhong Hu, Cen Zheng, Bo Wen, Hanbang Zheng, Lunfan Xu, Sicheng Pan, Bin Wu, Xiao He, Ye Li, Jian Tan, Sheng Wang, Dan Pei, Wei Zhang, Feifei Li","doi":"10.14778/3611540.3611559","DOIUrl":"https://doi.org/10.14778/3611540.3611559","url":null,"abstract":"Internet services supported by large-scale distributed systems have become essential for our daily life. To ensure the stability and high quality of services, diverse metric data are constantly collected and managed in a time-series database to monitor the service status. However, when the number of metrics becomes massive, existing time-series databases are inefficient in handling high-rate data ingestion and queries hitting multiple metrics. Besides, they all lack the support of machine learning functions, which are crucial for sophisticated analysis of large-scale time series. In this paper, we present Lindorm TSDB, a distributed time-series database designed for handling monitoring metrics at scale. It sustains high write throughput and low query latency with massive active metrics. It also allows users to analyze data with anomaly detection and time series forecasting algorithms directly through SQL. Furthermore, Lindorm TSDB retains stable performance even during node scaling. We evaluate Lindorm TSDB under different data scales, and the results show that it outperforms two popular open-source time-series databases on both writing and query, while executing time-series machine learning tasks efficiently.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PolarDB-SCC: A Cloud-Native Database Ensuring Low Latency for Strongly Consistent Reads PolarDB-SCC:一个云原生数据库,确保低延迟的强一致读取
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611562
Xinjun Yang, Yingqiang Zhang, Hao Chen, Chuan Sun, Feifei Li, Wenchao Zhou
{"title":"PolarDB-SCC: A Cloud-Native Database Ensuring Low Latency for Strongly Consistent Reads","authors":"Xinjun Yang, Yingqiang Zhang, Hao Chen, Chuan Sun, Feifei Li, Wenchao Zhou","doi":"10.14778/3611540.3611562","DOIUrl":"https://doi.org/10.14778/3611540.3611562","url":null,"abstract":"A classic design of cloud-native databases adopts an architecture that consists of one read/write (RW) node and one or more read-only (RO) nodes. In such a design, the propagation of write-ahead logs (WALs) from the RW node to the RO node(s) is typically performed asynchronously. Consequently, system designers either have to accept a loose consistency guarantee, where a read from the RO node may return stale data, or tolerate significant performance degradation in terms of read latency, as it then needs to wait for the log to be propagated and applied. Most commercial cloud-native databases, such as Amazon Aurora, choose performance over strong consistency. As a result, it makes RO nodes useless for many applications requiring read-after-write consistency (a form of strong consistency), and the support for serverless databases (i.e., allowing the RO nodes to be scaled out automatically) is impossible as they require a single endpoint. This paper proposes PolarDB-SCC (PolarDB-Strongly Consistent Cluster), a cloud-native database architecture that guarantees strongly consistent reads with very low latency. The core idea is to eliminate unnecessary waits and reduce the necessary wait time on RO nodes while still supporting strong consistency. To achieve this, it tracks the RW node's modification timestamp at three progressively finer-grained levels. We further design a Linear Lamport timestamp to reduce the RO node's timestamp fetching operations and leverage the RDMA network for all the data transferring ( e.g. , timestamp fetching and log shipment) to minimize network overhead and extra CPU usage. Our evaluation shows that PolarDB-SCC does not incur any noticeable overhead for ensuring strongly consistent reads compared with the eventually consistent (stale) read policy. To the best of our knowledge, PolarDB-SCC is the first \"read-write splitting\" cloud-native database that supports strongly consistent read with negligible overhead. Compared with a straightforward read-wait design, PolarDB-SCC improves throughput by up to 4.51× and reduces median latency by up to 3.66× in SysBench's read-write workload. PolarDB-SCC is already commercially available at Alibaba Cloud.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"44 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
OceanBase Paetica: A Hybrid Shared-Nothing/Shared-Everything Database for Supporting Single Machine and Distributed Cluster OceanBase Paetica:支持单机和分布式集群的无共享/万物共享混合数据库
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611560
Zhifeng Yang, Quanqing Xu, Shanyan Gao, Chuanhui Yang, Guoping Wang, Yuzhong Zhao, Fanyu Kong, Hao Liu, Wanhong Wang, Jinliang Xiao
{"title":"OceanBase Paetica: A Hybrid Shared-Nothing/Shared-Everything Database for Supporting Single Machine and Distributed Cluster","authors":"Zhifeng Yang, Quanqing Xu, Shanyan Gao, Chuanhui Yang, Guoping Wang, Yuzhong Zhao, Fanyu Kong, Hao Liu, Wanhong Wang, Jinliang Xiao","doi":"10.14778/3611540.3611560","DOIUrl":"https://doi.org/10.14778/3611540.3611560","url":null,"abstract":"In the ongoing evolution of the OceanBase database system, it is essential to enhance its adaptability to small-scale enterprises. The OceanBase database system has demonstrated its stability and effectiveness within the Ant Group and other commercial organizations, besides through the TPC-C and TPC-H tests. In this paper, we have designed a stand-alone and distributed integrated architecture named Paetica to address the overhead caused by the distributed components in the stand-alone mode, with respect to the OceanBase system. Paetica enables adaptive configuration of the database that allows OceanBase to support both serial and parallel executions in stand-alone and distributed scenarios, thus providing efficiency and economy. This design has been implemented in version 4.0 of the OceanBase system, and the experiments show that Paetica exhibits notable scalability and outperforms alternative stand-alone or distributed databases. Furthermore, it enables the transition of OceanBase from primarily serving large enterprises to truly catering to small and medium enterprises, by employing a single OceanBase database for the successive stages of enterprise or business development, without the requirement for migration. Our experiments confirm that Paetica has achieved linear scalability with the increasing CPU core number within the stand-alone mode. It also outperforms MySQL and Greenplum in the Sysbench and TPC-H evaluations.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"91 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135003654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Story of AWS Glue AWS Glue的故事
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611547
Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh Chandrachood, Chitti Keswani, G. Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah
{"title":"The Story of AWS Glue","authors":"Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh Chandrachood, Chitti Keswani, G. Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah","doi":"10.14778/3611540.3611547","DOIUrl":"https://doi.org/10.14778/3611540.3611547","url":null,"abstract":"AWS Glue is Amazon's serverless data integration cloud service that makes it simple and cost effective to extract, clean, enrich, load, and organize data. Originally launched in August 2017, AWS Glue began as an extract-transform-load (ETL) service designed to relieve developers and data engineers of the undifferentiated heavy lifting needed to load databases, data warehouses, and build data lakes on Amazon S3. Since then, it has evolved to serve a larger audience including ETL specialists and data scientists, and includes a broader suite of data integration capabilities. Today, hundreds of thousands of customers use AWS Glue every month. In this paper, we describe the use cases and challenges cloud customers face in preparing data for analytics and the tenets we chose to drive Glue's design. We chose early on to focus on ease-of-use, scale, and extensibility. At its core, Glue offers serverless Apache Spark and Python engines backed by a purpose-built resource manager for fast startup and auto-scaling. In Spark, it offers a new data structure --- DynamicFrames --- for manipulating messy schema-free semi-structured data such as event logs, a variety of transformations and tooling to simplify data preparation, and a new shuffle plugin to offload to cloud storage. It also includes a Hivemetastore compatible Data Catalog with Glue crawlers to build and manage metadata, e.g. for data lakes on Amazon S3. Finally, Glue Studio is its visual interface for authoring Spark and Python-based ETL jobs. We describe the innovations that differentiate AWS Glue and drive its popularity and how it has evolved over the years.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134996886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CDSBen: Benchmarking the Performance of Storage Services in Cloud-Native Database System at ByteDance CDSBen:在ByteDance上对云原生数据库系统中的存储服务性能进行基准测试
3区 计算机科学
Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI: 10.14778/3611540.3611549
Jiashu Zhang, Wen Jiang, Bo Tang, Haoxiang Ma, Lixun Cao, Zhongbin Jiang, Yuanyuan Nie, Fan Wang, Lei Zhang, Yuming Liang
{"title":"CDSBen: Benchmarking the Performance of Storage Services in Cloud-Native Database System at ByteDance","authors":"Jiashu Zhang, Wen Jiang, Bo Tang, Haoxiang Ma, Lixun Cao, Zhongbin Jiang, Yuanyuan Nie, Fan Wang, Lei Zhang, Yuming Liang","doi":"10.14778/3611540.3611549","DOIUrl":"https://doi.org/10.14778/3611540.3611549","url":null,"abstract":"In this work, we focus on the performance benchmarking problem of storage services in cloud-native database systems, which are widely used in various cloud applications. The core idea of these systems is to separate computation and storage in traditional monolithic OLTP databases. Specifically, we first present the characteristics of two representative real I/O workloads at the storage tier of ByteDance's cloud-native database veDB. We then elaborate the limitations of using standard benchmarks such as TPC-C and YCSB to resemble these workloads. To overcome these limitations, we devise a learning-based I/O workload benchmark called CDS-Ben. We demonstrate the superiority of CDSBen by deploying it at ByteDance and showing that its generated I/O traces accurately resemble the real I/O traces in production. Additionally, we verify the accuracy and flexibility of CDSBen by generating a wide range of I/O workloads with different I/O characteristics.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信