{"title":"Generations of Knowledge Graphs: The Crazy Ideas and the Business Impact","authors":"Xin Luna Dong","doi":"10.14778/3611540.3611636","DOIUrl":"https://doi.org/10.14778/3611540.3611636","url":null,"abstract":"Knowledge Graphs (KGs) have been used to support a wide range of applications, from web search to personal assistant. In this paper, we describe three generations of knowledge graphs: entity-based KGs , which have been supporting general search and question answering ( e.g. , at Google and Bing); text-rich KGs , which have been supporting search and recommendations for products, bio-informatics, etc. ( e.g. , at Amazon and Alibaba); and the emerging integration of KGs and LLMs, which we call dual neural KGs. We describe the characteristics of each generation of KGs, the crazy ideas behind the scenes in constructing such KGs, and the techniques developed over time to enable industry impact. In addition, we use KGs as examples to demonstrate a recipe to evolve research ideas from innovations to production practice, and then to the next level of innovations, to advance both science and business.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134996883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Execution of User-Defined Functions in SQL Queries","authors":"Yannis Foufoulas, Alkis Simitsis","doi":"10.14778/3611540.3611574","DOIUrl":"https://doi.org/10.14778/3611540.3611574","url":null,"abstract":"User-defined functions (UDFs) have been widely used to overcome the expressivity limitations of SQL and complement its declarative nature with functional capabilities. UDFs are particularly useful in today's applications that involve complex data analytics and machine learning algorithms and logic. However, UDFs pose significant performance challenges in query processing and optimization, largely due to the mismatch of the UDF execution and SQL processing environments. In this tutorial, we present state-of-the-art methods and systems towards efficient execution of UDFs in SQL queries. We focus on low-level techniques for physical optimization and compilation of UDF queries, describe and compare the core, recent approaches in the area, discuss their advantages and limitations, identify critical gaps in theory and practice, and propose promising future research directions.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134997930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lynx: A Graph Query Framework for Multiple Heterogeneous Data Sources","authors":"Zhihong Shen, Chuan Hu, Zihao Zhao","doi":"10.14778/3611540.3611587","DOIUrl":"https://doi.org/10.14778/3611540.3611587","url":null,"abstract":"Graph model are increasingly popular among modern applications for its ability to model complex relationships between entities. Users tend to query the data as a graph with graph operations (e.g., graph navigation and exploration). However, a large fraction of the data resides in relational databases or other storage systems. Challenges arise in uniformly querying multiple heterogeneous data sources as a graph. Traditional solutions are limited by time-consuming data integration, expensive development effort, and incomplete query requirements. Thus, we developed Lynx, a general graph query framework, to simplify querying graph data by converting complex statements into basic graph operations. Instead of connecting directly to the data sources, Lynx retrieves data through user-implemented interfaces for those graph operations. We demonstrate Lynx's capabilities through real-world scenarios, showcasing Lynx's ability to process graph queries on multiple heterogeneous data sources and also to be used as a generic graph query engine development framework.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wenjia He, Ibrahim Sabek, Yuze Lou, Michael Cafarella
{"title":"PAINE Demo: Optimizing Video Selection Queries with Commonsense Knowledge","authors":"Wenjia He, Ibrahim Sabek, Yuze Lou, Michael Cafarella","doi":"10.14778/3611540.3611581","DOIUrl":"https://doi.org/10.14778/3611540.3611581","url":null,"abstract":"Because video is becoming more popular and constitutes a major part of data collection, we have the need to process video selection queries --- selecting videos that contain target objects. However, a naïve scan of a video corpus without optimization would be extremely inefficient due to applying complex detectors to irrelevant videos. This demo presents Paine; a video query system that employs a novel index mechanism to optimize video selection queries via commonsense knowledge. Paine samples video frames to build an inexpensive lossy index, then leverages probabilistic models based on existing commonsense knowledge sources to capture the semantic-level correlation among video frames, thereby allowing Paine to predict the content of unindexed video. These models can predict which videos are likely to satisfy selection predicates so as to avoid Paine from processing irrelevant videos. We will demonstrate a system prototype of Paine for accelerating the processing of video selection queries, allowing VLDB'23 participants to use the Paine interface to run queries. Users can compare Paine with the baseline, the SCAN method.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"65 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ChainDash: An Ad-Hoc Blockchain Data Analytics System","authors":"Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin, Ying Yan","doi":"10.14778/3611540.3611611","DOIUrl":"https://doi.org/10.14778/3611540.3611611","url":null,"abstract":"The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"43 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Siong Yow, Ningyi Liao, Siqiang Luo, Reynold Cheng
{"title":"Machine Learning for Subgraph Extraction: Methods, Applications and Challenges","authors":"Kai Siong Yow, Ningyi Liao, Siqiang Luo, Reynold Cheng","doi":"10.14778/3611540.3611571","DOIUrl":"https://doi.org/10.14778/3611540.3611571","url":null,"abstract":"Subgraphs are obtained by extracting a subset of vertices and a subset of edges from the associated original graphs, and many graph properties are known to be inherited by subgraphs. Subgraphs can be applied in many areas such as social networks, recommender systems, biochemistry and fraud discovery. Researchers from various communities have paid a great deal of attention to investigate numerous subgraph problems, by proposing algorithms that mainly extract important structures of a given graph. There are however some limitations that should be addressed, with regard to the efficiency, effectiveness and scalability of these traditional algorithms. As a consequence, machine learning techniques---one of the most latest trends---have recently been employed in the database community to address various subgraph problems considering that they have been shown to be beneficial in dealing with graph-related problems. We discuss learning-based approaches for four well known subgraph problems in this tutorial, namely subgraph isomorphism, maximum common subgraph, community detection and community search problems. We give a general description of each proposed model, and analyse its design and performance. To allow further investigations on relevant subgraph problems, we suggest some potential future directions in this area. We believe that this work can be used as one of the primary resources, for researchers who intend to develop learning models in solving problems that are closely related to subgraphs.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"MINT: Detecting Fraudulent Behaviors from Time-Series Relational Data","authors":"Fei Xiao, Yuncheng Wu, Meihui Zhang, Gang Chen, Beng Chin Ooi","doi":"10.14778/3611540.3611551","DOIUrl":"https://doi.org/10.14778/3611540.3611551","url":null,"abstract":"The e-commerce platforms, such as Shopee, have accumulated a huge volume of time-series relational data, which contains useful information on differentiating fraud users from benign users. Existing fraud behavior detection approaches typically model the time-series data with a vanilla Recurrent Neural Network (RNN) or combine the whole sequence as a single intention without considering the temporal behavioral patterns, row-level interactions, and different view intentions. In this paper, we present MINT, a M ultiview row- IN teractive T ime-aware framework to detect fraudulent behaviors from time-series structured data. The key idea of MINT is to build a time-aware behavior graph for each user's time-series relational data with each row represented as an action node. We utilize the user's temporal information to construct three different graph convolutional matrices for hierarchically learning the user's intentions from different views, that is, short-term, medium-term, and long-term intentions. To capture more meaningful row-level interactions and alleviate the over-smoothing issue in a vanilla time-aware behavior graph, we propose a novel gated neighbor interaction mechanism to calibrate the aggregated information by each action node. Since the receptive fields of the three graph convolutional layers are designed to grow nearly exponentially, our MINT requires many fewer layers than traditional deep graph neural networks (GNNs) to capture multi-hop neighboring information, and avoids recurrent feedforward propagation, thus leading to higher training efficiency and scalability. Our extensive experiments on the large-scale e-commerce datasets from Shopee with up to 4.6 billion records and a public dataset from Amazon show that MINT achieves superior performance over 10 state-of-the-art models and provides better interpretability and scalability.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, Donato Tiano
{"title":"Interpretable Clustering of Multivariate Time Series with Time2Feat","authors":"Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, Donato Tiano","doi":"10.14778/3611540.3611604","DOIUrl":"https://doi.org/10.14778/3611540.3611604","url":null,"abstract":"This paper showcases Time2Feat, an end-to-end machine learning system for Multivariate Time Series (MTS) clustering. The system relies on interpretable inter-signal and intra-signal features extracted from the time series. Then, a dimensionality reduction technique is applied to select a subset of features that retain most of the information, thus enhancing the interpretability of the results. In addition, the system enables domain specialists to semi-supervise the process by submitting a small collection of MTS with a target cluster. This process further improves both accuracy and interpretability, by reducing the number of features used by the clustering process. The demonstration shows the application of Time2Feat to various MTS datasets, by creating clusters from MTS datasets of interest, experimenting with different settings and using the approach capabilities to interpret the clusters generated.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DuckPGQ: Bringing SQL/PGQ to DuckDB","authors":"Daniel ten Wolde, Gábor Szárnyas, Peter Boncz","doi":"10.14778/3611540.3611614","DOIUrl":"https://doi.org/10.14778/3611540.3611614","url":null,"abstract":"We demonstrate the most important new feature of SQL:2023, namely SQL/PGQ, which eases querying graphs using SQL by introducing new syntax for pattern matching and (shortest) path-finding. We show how support for SQL/PGQ can be integrated into an RDBMS, specifically in the DuckDB system, using an extension module called DuckPGQ. As such, we also demonstrate the use of the DuckDB extensibility mechanism, which allows us to add new functions, data types, operators, optimizer rules, storage systems, and even parsers to DuckDB. We also describe the new data structures and algorithms that the DuckPGQ module is based on, and how they are injected into SQL plans. While the demonstrated DuckPGQ extension module is lean and efficient, we sketch a roadmap to (i) improve its performance through new algorithms (factorized and WCOJ) and better parallelism and (ii) extend its functionality to scenarios beyond SQL, e.g., building and analyzing Graph Neural Networks.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"70 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134998309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus
{"title":"AutoSteer: Learned Query Optimization for Any SQL Database","authors":"Christoph Anneser, Nesime Tatbul, David Cohen, Zhenggang Xu, Prithviraj Pandian, Nikolay Laptev, Ryan Marcus","doi":"10.14778/3611540.3611544","DOIUrl":"https://doi.org/10.14778/3611540.3611544","url":null,"abstract":"This paper presents AutoSteer, a learning-based solution that automatically drives query optimization in any SQL database that exposes tunable optimizer knobs. AutoSteer builds on the Bandit optimizer (Bao) and extends it with new capabilities (e.g., automated hint-set discovery) to minimize integration effort and facilitate usability in both monolithic and disaggregated SQL systems. We successfully applied AutoSteer on PostgreSQL, PrestoDB, Spark-SQL, MySQL, and DuckDB - five popular open-source database engines with diverse query optimizers. We then conducted a detailed experimental evaluation with public benchmarks (JOB, Stackoverflow, TPC-DS) and a production workload from Meta's PrestoDB deployments. Our evaluation shows that AutoSteer can not only outperform these engines' native query optimizers (e.g., up to 40% improvements for PrestoDB) but can also match the performance of Bao-for-PostgreSQL with reduced human supervision and increased adaptivity, as it replaces Bao's static, expert-picked hint-sets with those that are automatically discovered. We also provide an open-source implementation of AutoSteer together with a visual tool for interactive use by query optimization experts.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135002984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}