{"title":"ChainDash: Ad-Hoc区块链数据分析系统","authors":"Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin, Ying Yan","doi":"10.14778/3611540.3611611","DOIUrl":null,"url":null,"abstract":"The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"43 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ChainDash: An Ad-Hoc Blockchain Data Analytics System\",\"authors\":\"Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin, Ying Yan\",\"doi\":\"10.14778/3611540.3611611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611611\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611611","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ChainDash: An Ad-Hoc Blockchain Data Analytics System
The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.