Zhuo Ma, Yilong Yang, Bin Xiao, Yang Liu, Xinjing Liu, Zhuoran Ma, Tong Yang
{"title":"Sniffer:一种针对机器学习即服务平台的新型模型类型检测系统","authors":"Zhuo Ma, Yilong Yang, Bin Xiao, Yang Liu, Xinjing Liu, Zhuoran Ma, Tong Yang","doi":"10.14778/3611540.3611591","DOIUrl":null,"url":null,"abstract":"Recent works explore several attacks against Machine-Learning-as-a-Service (MLaaS) platforms (e.g., the model stealing attack), allegedly posing potential real-world threats beyond viability in laboratories. However, hampered by model-type-sensitive , most of the attacks can hardly break mainstream real-world MLaaS platforms. That is, many MLaaS attacks are designed against only one certain type of model, such as tree models or neural networks. As the black-box MLaaS interface hides model type info, the attacker cannot choose a proper attack method with confidence, limiting the attack performance. In this paper, we demonstrate a system, named Sniffer, that is capable of making model-type-sensitive attacks \"great again\" in real-world applications. Specifically, Sniffer consists of four components: Generator, Querier, Probe, and Arsenal. The first two components work for preparing attack samples. Probe, as the most characteristic component in Sniffer, implements a series of self-designed algorithms to determine the type of models hidden behind the black-box MLaaS interfaces. With model type info unraveled, an optimum method can be selected from Arsenal (containing multiple attack methods) to accomplish its attack. Our demonstration shows how the audience can interact with Sniffer in a web-based interface against five mainstream MLaaS platforms.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"40 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sniffer: A Novel Model Type Detection System against Machine-Learning-as-a-Service Platforms\",\"authors\":\"Zhuo Ma, Yilong Yang, Bin Xiao, Yang Liu, Xinjing Liu, Zhuoran Ma, Tong Yang\",\"doi\":\"10.14778/3611540.3611591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent works explore several attacks against Machine-Learning-as-a-Service (MLaaS) platforms (e.g., the model stealing attack), allegedly posing potential real-world threats beyond viability in laboratories. However, hampered by model-type-sensitive , most of the attacks can hardly break mainstream real-world MLaaS platforms. That is, many MLaaS attacks are designed against only one certain type of model, such as tree models or neural networks. As the black-box MLaaS interface hides model type info, the attacker cannot choose a proper attack method with confidence, limiting the attack performance. In this paper, we demonstrate a system, named Sniffer, that is capable of making model-type-sensitive attacks \\\"great again\\\" in real-world applications. Specifically, Sniffer consists of four components: Generator, Querier, Probe, and Arsenal. The first two components work for preparing attack samples. Probe, as the most characteristic component in Sniffer, implements a series of self-designed algorithms to determine the type of models hidden behind the black-box MLaaS interfaces. With model type info unraveled, an optimum method can be selected from Arsenal (containing multiple attack methods) to accomplish its attack. Our demonstration shows how the audience can interact with Sniffer in a web-based interface against five mainstream MLaaS platforms.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611591\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611591","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Sniffer: A Novel Model Type Detection System against Machine-Learning-as-a-Service Platforms
Recent works explore several attacks against Machine-Learning-as-a-Service (MLaaS) platforms (e.g., the model stealing attack), allegedly posing potential real-world threats beyond viability in laboratories. However, hampered by model-type-sensitive , most of the attacks can hardly break mainstream real-world MLaaS platforms. That is, many MLaaS attacks are designed against only one certain type of model, such as tree models or neural networks. As the black-box MLaaS interface hides model type info, the attacker cannot choose a proper attack method with confidence, limiting the attack performance. In this paper, we demonstrate a system, named Sniffer, that is capable of making model-type-sensitive attacks "great again" in real-world applications. Specifically, Sniffer consists of four components: Generator, Querier, Probe, and Arsenal. The first two components work for preparing attack samples. Probe, as the most characteristic component in Sniffer, implements a series of self-designed algorithms to determine the type of models hidden behind the black-box MLaaS interfaces. With model type info unraveled, an optimum method can be selected from Arsenal (containing multiple attack methods) to accomplish its attack. Our demonstration shows how the audience can interact with Sniffer in a web-based interface against five mainstream MLaaS platforms.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.