Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh Chandrachood, Chitti Keswani, G. Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah
{"title":"AWS Glue的故事","authors":"Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh Chandrachood, Chitti Keswani, G. Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah","doi":"10.14778/3611540.3611547","DOIUrl":null,"url":null,"abstract":"AWS Glue is Amazon's serverless data integration cloud service that makes it simple and cost effective to extract, clean, enrich, load, and organize data. Originally launched in August 2017, AWS Glue began as an extract-transform-load (ETL) service designed to relieve developers and data engineers of the undifferentiated heavy lifting needed to load databases, data warehouses, and build data lakes on Amazon S3. Since then, it has evolved to serve a larger audience including ETL specialists and data scientists, and includes a broader suite of data integration capabilities. Today, hundreds of thousands of customers use AWS Glue every month. In this paper, we describe the use cases and challenges cloud customers face in preparing data for analytics and the tenets we chose to drive Glue's design. We chose early on to focus on ease-of-use, scale, and extensibility. At its core, Glue offers serverless Apache Spark and Python engines backed by a purpose-built resource manager for fast startup and auto-scaling. In Spark, it offers a new data structure --- DynamicFrames --- for manipulating messy schema-free semi-structured data such as event logs, a variety of transformations and tooling to simplify data preparation, and a new shuffle plugin to offload to cloud storage. It also includes a Hivemetastore compatible Data Catalog with Glue crawlers to build and manage metadata, e.g. for data lakes on Amazon S3. Finally, Glue Studio is its visual interface for authoring Spark and Python-based ETL jobs. We describe the innovations that differentiate AWS Glue and drive its popularity and how it has evolved over the years.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"10 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Story of AWS Glue\",\"authors\":\"Mohit Saxena, Benjamin Sowell, Daiyan Alamgir, Nitin Bahadur, Bijay Bisht, Santosh Chandrachood, Chitti Keswani, G. Krishnamoorthy, Austin Lee, Bohou Li, Zach Mitchell, Vaibhav Porwal, Maheedhar Reddy Chappidi, Brian Ross, Noritaka Sekiyama, Omer Zaki, Linchi Zhang, Mehul A. Shah\",\"doi\":\"10.14778/3611540.3611547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AWS Glue is Amazon's serverless data integration cloud service that makes it simple and cost effective to extract, clean, enrich, load, and organize data. Originally launched in August 2017, AWS Glue began as an extract-transform-load (ETL) service designed to relieve developers and data engineers of the undifferentiated heavy lifting needed to load databases, data warehouses, and build data lakes on Amazon S3. Since then, it has evolved to serve a larger audience including ETL specialists and data scientists, and includes a broader suite of data integration capabilities. Today, hundreds of thousands of customers use AWS Glue every month. In this paper, we describe the use cases and challenges cloud customers face in preparing data for analytics and the tenets we chose to drive Glue's design. We chose early on to focus on ease-of-use, scale, and extensibility. At its core, Glue offers serverless Apache Spark and Python engines backed by a purpose-built resource manager for fast startup and auto-scaling. In Spark, it offers a new data structure --- DynamicFrames --- for manipulating messy schema-free semi-structured data such as event logs, a variety of transformations and tooling to simplify data preparation, and a new shuffle plugin to offload to cloud storage. It also includes a Hivemetastore compatible Data Catalog with Glue crawlers to build and manage metadata, e.g. for data lakes on Amazon S3. Finally, Glue Studio is its visual interface for authoring Spark and Python-based ETL jobs. We describe the innovations that differentiate AWS Glue and drive its popularity and how it has evolved over the years.\",\"PeriodicalId\":54220,\"journal\":{\"name\":\"Proceedings of the Vldb Endowment\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Vldb Endowment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14778/3611540.3611547\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611547","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
AWS Glue is Amazon's serverless data integration cloud service that makes it simple and cost effective to extract, clean, enrich, load, and organize data. Originally launched in August 2017, AWS Glue began as an extract-transform-load (ETL) service designed to relieve developers and data engineers of the undifferentiated heavy lifting needed to load databases, data warehouses, and build data lakes on Amazon S3. Since then, it has evolved to serve a larger audience including ETL specialists and data scientists, and includes a broader suite of data integration capabilities. Today, hundreds of thousands of customers use AWS Glue every month. In this paper, we describe the use cases and challenges cloud customers face in preparing data for analytics and the tenets we chose to drive Glue's design. We chose early on to focus on ease-of-use, scale, and extensibility. At its core, Glue offers serverless Apache Spark and Python engines backed by a purpose-built resource manager for fast startup and auto-scaling. In Spark, it offers a new data structure --- DynamicFrames --- for manipulating messy schema-free semi-structured data such as event logs, a variety of transformations and tooling to simplify data preparation, and a new shuffle plugin to offload to cloud storage. It also includes a Hivemetastore compatible Data Catalog with Glue crawlers to build and manage metadata, e.g. for data lakes on Amazon S3. Finally, Glue Studio is its visual interface for authoring Spark and Python-based ETL jobs. We describe the innovations that differentiate AWS Glue and drive its popularity and how it has evolved over the years.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.