Journal of Integrative Bioinformatics最新文献

筛选
英文 中文
MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction. MCMVDRP:用于癌症药物反应预测的多通道多视角深度学习框架。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-09-02 DOI: 10.1515/jib-2024-0026
Xiangyu Li, Xiumin Shi, Yuxuan Li, Lu Wang
{"title":"MCMVDRP: a multi-channel multi-view deep learning framework for cancer drug response prediction.","authors":"Xiangyu Li, Xiumin Shi, Yuxuan Li, Lu Wang","doi":"10.1515/jib-2024-0026","DOIUrl":"https://doi.org/10.1515/jib-2024-0026","url":null,"abstract":"<p><p>Drug therapy remains the primary approach to treating tumours. Variability among cancer patients, including variations in genomic profiles, often results in divergent therapeutic responses to analogous anti-cancer drug treatments within the same cohort of cancer patients. Hence, predicting the drug response by analysing the genomic profile characteristics of individual patients holds significant research importance. With the notable progress in machine learning and deep learning, many effective methods have emerged for predicting drug responses utilizing features from both drugs and cell lines. However, these methods are inadequate in capturing a sufficient number of features inherent to drugs. Consequently, we propose a representational approach for drugs that incorporates three distinct types of features: the molecular graph, the SMILE strings, and the molecular fingerprints. In this study, a novel deep learning model, named MCMVDRP, is introduced for the prediction of cancer drug responses. In our proposed model, an amalgamation of these extracted features is performed, followed by the utilization of fully connected layers to predict the drug response based on the IC50 values. Experimental results demonstrate that the presented model outperforms current state-of-the-art models in performance.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141758","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leonhard Med, a trusted research environment for processing sensitive research data. Leonhard Med,一个用于处理敏感研究数据的可信研究环境。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-08-02 DOI: 10.1515/jib-2024-0021
Michal J Okoniewski, Anna Wiegand, Diana Coman Schmid, Christian Bolliger, Cristian Bovino, Mattia Belluco, Thomas Wüst, Olivier Byrde, Sergio Maffioletti, Bernd Rinn
{"title":"<i>Leonhard Med</i>, a trusted research environment for processing sensitive research data.","authors":"Michal J Okoniewski, Anna Wiegand, Diana Coman Schmid, Christian Bolliger, Cristian Bovino, Mattia Belluco, Thomas Wüst, Olivier Byrde, Sergio Maffioletti, Bernd Rinn","doi":"10.1515/jib-2024-0021","DOIUrl":"https://doi.org/10.1515/jib-2024-0021","url":null,"abstract":"<p><p>This paper provides an overview of the development and operation of the <i>Leonhard Med</i> Trusted Research Environment (TRE) at ETH Zurich. <i>Leonhard Med</i> gives scientific researchers the ability to securely work on sensitive research data. We give an overview of the user perspective, the legal framework for processing sensitive data, design history, current status, and operations. <i>Leonhard Med</i> is an efficient, highly secure Trusted Research Environment for data processing, hosted at ETH Zurich and operated by the Scientific IT Services (SIS) of ETH. It provides a full stack of security controls that allow researchers to store, access, manage, and process sensitive data according to Swiss legislation and ETH Zurich Data Protection policies. In addition, <i>Leonhard Med</i> fulfills the BioMedIT Information Security Policies and is compatible with international data protection laws and therefore can be utilized within the scope of national and international collaboration research projects. Initially designed as a \"bare-metal\" High-Performance Computing (HPC) platform to achieve maximum performance, <i>Leonhard Med</i> was later re-designed as a virtualized, private cloud platform to offer more flexibility to its customers. Sensitive data can be analyzed in secure, segregated spaces called tenants. Technical and Organizational Measures (TOMs) are in place to assure the confidentiality, integrity, and availability of sensitive data. At the same time, <i>Leonhard Med</i> ensures broad access to cutting-edge research software, especially for the analysis of human -omics data and other personalized health applications.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework. 探索身临其境环境中的动物行为多层网络--一个概念框架。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-24 DOI: 10.1515/jib-2024-0022
Stefan Paul Feyer, Bruno Pinaud, Karsten Klein, Etienne Lein, Falk Schreiber
{"title":"Exploring animal behaviour multilayer networks in immersive environments - a conceptual framework.","authors":"Stefan Paul Feyer, Bruno Pinaud, Karsten Klein, Etienne Lein, Falk Schreiber","doi":"10.1515/jib-2024-0022","DOIUrl":"https://doi.org/10.1515/jib-2024-0022","url":null,"abstract":"<p><p>Animal behaviour is often modelled as networks, where, for example, the nodes are individuals of a group and the edges represent behaviour within this group. Different types of behaviours or behavioural categories are then modelled as different yet connected networks which form a multilayer network. Recent developments show the potential and benefit of multilayer networks for animal behaviour research as well as the potential benefit of stereoscopic 3D immersive environments for the interactive visualisation, exploration and analysis of animal behaviour multilayer networks. However, so far animal behaviour research is mainly supported by libraries or software on 2D desktops. Here, we explore the domain-specific requirements for (stereoscopic) 3D environments. Based on those requirements, we provide a proof of concept to visualise, explore and analyse animal behaviour multilayer networks in immersive environments.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information. 利用系统发生树折叠器(PTC)推断昆虫抗坏血酸合成途径的进化,PTC 是一种利用分类信息自动折叠系统发生树的工具。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-24 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0051
Daniel Glez-Peña, Hugo López-Fernández, Pedro Duque, Cristina P Vieira, Jorge Vieira
{"title":"Inferences on the evolution of the ascorbic acid synthesis pathway in insects using Phylogenetic Tree Collapser (PTC), a tool for the automated collapsing of phylogenetic trees using taxonomic information.","authors":"Daniel Glez-Peña, Hugo López-Fernández, Pedro Duque, Cristina P Vieira, Jorge Vieira","doi":"10.1515/jib-2023-0051","DOIUrl":"10.1515/jib-2023-0051","url":null,"abstract":"<p><p>When inferring the evolution of a gene/gene family, it is advisable to use all available coding sequences (CDS) from as many species genomes as possible in order to infer and date all gene duplications and losses. Nowadays, this means using hundreds or even thousands of CDSs, which makes the inferred phylogenetic trees difficult to visualize and interpret. Therefore, it is useful to have an automated way of collapsing large phylogenetic trees according to a taxonomic term decided by the user (family, class, or order, for instance), in order to highlight the minimal set of sequences that should be used to recapitulate the full history of the gene/gene family being studied at that taxonomic level, that can be refined using additional software. Here we present the Phylogenetic Tree Collapser (PTC) program (https://github.com/pegi3s/phylogenetic-tree-collapser), a flexible tool for automated tree collapsing using taxonomic information, that can be easily used by researchers without a background in informatics, since it only requires the installation of Docker, Podman or Singularity. The utility of PTC is demonstrated by addressing the evolution of the ascorbic acid synthesis pathway in insects. A Docker image is available at Docker Hub (https://hub.docker.com/r/pegi3s/phylogenetic-tree-collapser) with PTC installed and ready-to-run.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141762605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024. 系统和合成生物学标准规范:2024 年的现状、发展和工具。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-22 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0015
Martin Golebiewski, Gary Bader, Padraig Gleeson, Thomas E Gorochowski, Sarah M Keating, Matthias König, Chris J Myers, David P Nickerson, Björn Sommer, Dagmar Waltemath, Falk Schreiber
{"title":"Specifications of standards in systems and synthetic biology: status, developments, and tools in 2024.","authors":"Martin Golebiewski, Gary Bader, Padraig Gleeson, Thomas E Gorochowski, Sarah M Keating, Matthias König, Chris J Myers, David P Nickerson, Björn Sommer, Dagmar Waltemath, Falk Schreiber","doi":"10.1515/jib-2024-0015","DOIUrl":"10.1515/jib-2024-0015","url":null,"abstract":"","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141725016","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction. 检测病例对照队列中的异常值,改进深度学习网络对精神分裂症的预测。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-15 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0042
Daniel Martins, Maryam Abbasi, Conceição Egas, Joel P Arrais
{"title":"Detecting outliers in case-control cohorts for improving deep learning networks on Schizophrenia prediction.","authors":"Daniel Martins, Maryam Abbasi, Conceição Egas, Joel P Arrais","doi":"10.1515/jib-2023-0042","DOIUrl":"10.1515/jib-2023-0042","url":null,"abstract":"<p><p>This study delves into the intricate genetic and clinical aspects of Schizophrenia, a complex mental disorder with uncertain etiology. Deep Learning (DL) holds promise for analyzing large genomic datasets to uncover new risk factors. However, based on reports of non-negligible misdiagnosis rates for SCZ, case-control cohorts may contain outlying genetic profiles, hindering compelling performances of classification models. The research employed a case-control dataset sourced from the Swedish populace. A gene-annotation-based DL architecture was developed and employed in two stages. First, the model was trained on the entire dataset to highlight differences between cases and controls. Then, samples likely to be misclassified were excluded, and the model was retrained on the refined dataset for performance evaluation. The results indicate that SCZ prevalence and misdiagnosis rates can affect case-control cohorts, potentially compromising future studies reliant on such datasets. However, by detecting and filtering outliers, the study demonstrates the feasibility of adapting DL methodologies to large-scale biological problems, producing results more aligned with existing heritability estimates for SCZ. This approach not only advances the comprehension of the genetic background of SCZ but also opens doors for adapting DL techniques in complex research for precision medicine in mental health.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141617597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Layout of anatomical structures and blood vessels based on the foundational model of anatomy. 根据解剖学基础模型,布局解剖结构和血管。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-12 DOI: 10.1515/jib-2024-0023
Niklas Gröne, Benjamin Grüneisen, Karsten Klein, Bernard de Bono, Tobias Czauderna, Falk Schreiber
{"title":"Layout of anatomical structures and blood vessels based on the foundational model of anatomy.","authors":"Niklas Gröne, Benjamin Grüneisen, Karsten Klein, Bernard de Bono, Tobias Czauderna, Falk Schreiber","doi":"10.1515/jib-2024-0023","DOIUrl":"https://doi.org/10.1515/jib-2024-0023","url":null,"abstract":"<p><p>We present a method for the layout of anatomical structures and blood vessels based on information from the Foundational Model of Anatomy (FMA). Our approach integrates a novel vascular layout into the hierarchical treemap representation of anatomy as used in ApiNATOMY. Our method aims to improve the comprehension of complex anatomical and vascular data by providing readable visual representations. The effectiveness of our method is demonstrated through a prototype developed in VANTED, showing potential for application in research, education, and clinical settings.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141602167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transformers meets neoantigen detection: a systematic literature review. 变形金刚与新抗原检测:系统文献综述。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-07-04 eCollection Date: 2024-06-01 DOI: 10.1515/jib-2023-0043
Vicente Machaca, Valeria Goyzueta, María Graciel Cruz, Erika Sejje, Luz Marina Pilco, Julio López, Yván Túpac
{"title":"Transformers meets neoantigen detection: a systematic literature review.","authors":"Vicente Machaca, Valeria Goyzueta, María Graciel Cruz, Erika Sejje, Luz Marina Pilco, Julio López, Yván Túpac","doi":"10.1515/jib-2023-0043","DOIUrl":"10.1515/jib-2023-0043","url":null,"abstract":"<p><p>Cancer immunology offers a new alternative to traditional cancer treatments, such as radiotherapy and chemotherapy. One notable alternative is the development of personalized vaccines based on cancer neoantigens. Moreover, Transformers are considered a revolutionary development in artificial intelligence with a significant impact on natural language processing (NLP) tasks and have been utilized in proteomics studies in recent years. In this context, we conducted a systematic literature review to investigate how Transformers are applied in each stage of the neoantigen detection process. Additionally, we mapped current pipelines and examined the results of clinical trials involving cancer vaccines.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141499640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MakeSBML: a tool for converting between Antimony and SBML. MakeSBML:在 Antimony 和 SBML 之间进行转换的工具。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-06-11 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0002
Bartholomew E Jardine, Lucian P Smith, Herbert M Sauro
{"title":"MakeSBML: a tool for converting between Antimony and SBML.","authors":"Bartholomew E Jardine, Lucian P Smith, Herbert M Sauro","doi":"10.1515/jib-2024-0002","DOIUrl":"10.1515/jib-2024-0002","url":null,"abstract":"<p><p>We describe a web-based tool, MakeSBML (https://sys-bio.github.io/makesbml/), that provides an installation-free application for creating, editing, and searching the Biomodels repository for SBML-based models. MakeSBML is a client-based web application that translates models expressed in human-readable Antimony to the System Biology Markup Language (SBML) and vice-versa. Since MakeSBML is a web-based application it requires no installation on the user's part. Currently, MakeSBML is hosted on a GitHub page where the client-based design makes it trivial to move to other hosts. This model for software deployment also reduces maintenance costs since an active server is not required. The SBML modeling language is often used in systems biology research to describe complex biochemical networks and makes reproducing models much easier. However, SBML is designed to be computer-readable, not human-readable. We therefore employ the human-readable Antimony language to make it easy to create and edit SBML models.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141302067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem. SBMLToolkit.jl:将 SBML 导入 SciML 生态系统的 Julia 软件包。
IF 1.5
Journal of Integrative Bioinformatics Pub Date : 2024-05-28 eCollection Date: 2024-03-01 DOI: 10.1515/jib-2024-0003
Paul F Lang, Anand Jain, Christopher Rackauckas
{"title":"SBMLToolkit.jl: a Julia package for importing SBML into the SciML ecosystem.","authors":"Paul F Lang, Anand Jain, Christopher Rackauckas","doi":"10.1515/jib-2024-0003","DOIUrl":"10.1515/jib-2024-0003","url":null,"abstract":"<p><p>Julia is a general purpose programming language that was designed for simplifying and accelerating numerical analysis and computational science. In particular the Scientific Machine Learning (SciML) ecosystem of Julia packages includes frameworks for high-performance symbolic-numeric computations. It allows users to automatically enhance high-level descriptions of their models with symbolic preprocessing and automatic sparsification and parallelization of computations. This enables performant solution of differential equations, efficient parameter estimation and methodologies for automated model discovery with neural differential equations and sparse identification of nonlinear dynamics. To give the systems biology community easy access to SciML, we developed SBMLToolkit.jl. SBMLToolkit.jl imports dynamic SBML models into the SciML ecosystem to accelerate model simulation and fitting of kinetic parameters. By providing computational systems biologists with easy access to the open-source Julia ecosystevnm, we hope to catalyze the development of further Julia tools in this domain and the growth of the Julia bioscience community. SBMLToolkit.jl is freely available under the MIT license. The source code is available at https://github.com/SciML/SBMLToolkit.jl.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158826","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信