{"title":"利用深度学习从组织学切片中的腺体形状预测结肠癌存活。","authors":"Rawan Gedeon, Atulya Nagar","doi":"10.1515/jib-2024-0052","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the application of deep learning techniques for segmenting glands in histopathological images of colorectal cancer. We trained two convolutional neural network models, U-Net and DCAN, on a combination of the GlaS and CRAG datasets to enhance generalization across diverse histological appearances, selecting DCAN for its superior accuracy in delineating gland boundaries. The goal was to achieve robust gland segmentation applicable to whole slide images (WSIs) from The Cancer Genome Atlas (TCGA). Using the segmented glands, we extracted patient-level morphological features and used them to predict survival outcomes. A Cox proportional hazards model was trained on these features and achieved a high concordance index, indicating strong predictive performance. Patients were then stratified into high- and low-risk groups, with significant differences in survival distributions (log-rank <i>p</i>-value: 0.01317). In addition, we benchmarked our models against state-of-the-art gland segmentation methods on GlaS and CRAG, highlighting the trade-off between domain-specific accuracy and cross-dataset robustness.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Colon cancer survival prediction from gland shapes within histology slides using deep learning.\",\"authors\":\"Rawan Gedeon, Atulya Nagar\",\"doi\":\"10.1515/jib-2024-0052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigates the application of deep learning techniques for segmenting glands in histopathological images of colorectal cancer. We trained two convolutional neural network models, U-Net and DCAN, on a combination of the GlaS and CRAG datasets to enhance generalization across diverse histological appearances, selecting DCAN for its superior accuracy in delineating gland boundaries. The goal was to achieve robust gland segmentation applicable to whole slide images (WSIs) from The Cancer Genome Atlas (TCGA). Using the segmented glands, we extracted patient-level morphological features and used them to predict survival outcomes. A Cox proportional hazards model was trained on these features and achieved a high concordance index, indicating strong predictive performance. Patients were then stratified into high- and low-risk groups, with significant differences in survival distributions (log-rank <i>p</i>-value: 0.01317). In addition, we benchmarked our models against state-of-the-art gland segmentation methods on GlaS and CRAG, highlighting the trade-off between domain-specific accuracy and cross-dataset robustness.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2024-0052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Colon cancer survival prediction from gland shapes within histology slides using deep learning.
This study investigates the application of deep learning techniques for segmenting glands in histopathological images of colorectal cancer. We trained two convolutional neural network models, U-Net and DCAN, on a combination of the GlaS and CRAG datasets to enhance generalization across diverse histological appearances, selecting DCAN for its superior accuracy in delineating gland boundaries. The goal was to achieve robust gland segmentation applicable to whole slide images (WSIs) from The Cancer Genome Atlas (TCGA). Using the segmented glands, we extracted patient-level morphological features and used them to predict survival outcomes. A Cox proportional hazards model was trained on these features and achieved a high concordance index, indicating strong predictive performance. Patients were then stratified into high- and low-risk groups, with significant differences in survival distributions (log-rank p-value: 0.01317). In addition, we benchmarked our models against state-of-the-art gland segmentation methods on GlaS and CRAG, highlighting the trade-off between domain-specific accuracy and cross-dataset robustness.