Colon cancer survival prediction from gland shapes within histology slides using deep learning.

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Rawan Gedeon, Atulya Nagar
{"title":"Colon cancer survival prediction from gland shapes within histology slides using deep learning.","authors":"Rawan Gedeon, Atulya Nagar","doi":"10.1515/jib-2024-0052","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the application of deep learning techniques for segmenting glands in histopathological images of colorectal cancer. We trained two convolutional neural network models, U-Net and DCAN, on a combination of the GlaS and CRAG datasets to enhance generalization across diverse histological appearances, selecting DCAN for its superior accuracy in delineating gland boundaries. The goal was to achieve robust gland segmentation applicable to whole slide images (WSIs) from The Cancer Genome Atlas (TCGA). Using the segmented glands, we extracted patient-level morphological features and used them to predict survival outcomes. A Cox proportional hazards model was trained on these features and achieved a high concordance index, indicating strong predictive performance. Patients were then stratified into high- and low-risk groups, with significant differences in survival distributions (log-rank <i>p</i>-value: 0.01317). In addition, we benchmarked our models against state-of-the-art gland segmentation methods on GlaS and CRAG, highlighting the trade-off between domain-specific accuracy and cross-dataset robustness.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the application of deep learning techniques for segmenting glands in histopathological images of colorectal cancer. We trained two convolutional neural network models, U-Net and DCAN, on a combination of the GlaS and CRAG datasets to enhance generalization across diverse histological appearances, selecting DCAN for its superior accuracy in delineating gland boundaries. The goal was to achieve robust gland segmentation applicable to whole slide images (WSIs) from The Cancer Genome Atlas (TCGA). Using the segmented glands, we extracted patient-level morphological features and used them to predict survival outcomes. A Cox proportional hazards model was trained on these features and achieved a high concordance index, indicating strong predictive performance. Patients were then stratified into high- and low-risk groups, with significant differences in survival distributions (log-rank p-value: 0.01317). In addition, we benchmarked our models against state-of-the-art gland segmentation methods on GlaS and CRAG, highlighting the trade-off between domain-specific accuracy and cross-dataset robustness.

利用深度学习从组织学切片中的腺体形状预测结肠癌存活。
本研究探讨了深度学习技术在结直肠癌组织病理图像中分割腺体的应用。我们在GlaS和CRAG数据集的组合上训练了两个卷积神经网络模型U-Net和DCAN,以增强对不同组织学外观的泛化,选择DCAN是因为它在描绘腺体边界方面具有卓越的准确性。目标是实现适用于来自癌症基因组图谱(TCGA)的整个幻灯片图像(WSIs)的稳健腺体分割。通过分割腺体,我们提取了患者水平的形态学特征,并用它们来预测生存结果。根据这些特征训练了Cox比例风险模型,并获得了较高的一致性指数,表明具有较强的预测性能。然后将患者分为高危组和低危组,生存分布有显著差异(log-rank p值:0.01317)。此外,我们将我们的模型与GlaS和CRAG上最先进的腺体分割方法进行了基准测试,强调了特定领域准确性和跨数据集鲁棒性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信