人胚胎干细胞(hESC)向心肌细胞分化的转录后调控网络的Petri网建模和模拟。

IF 1.8 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Journal of Integrative Bioinformatics Pub Date : 2025-06-23 eCollection Date: 2025-03-01 DOI:10.1515/jib-2024-0037
Aruana F F Hansel-Fröse, Christoph Brinkrolf, Marcel Friedrichs, Bruno Dallagiovanna, Lucia Spangenberg
{"title":"人胚胎干细胞(hESC)向心肌细胞分化的转录后调控网络的Petri网建模和模拟。","authors":"Aruana F F Hansel-Fröse, Christoph Brinkrolf, Marcel Friedrichs, Bruno Dallagiovanna, Lucia Spangenberg","doi":"10.1515/jib-2024-0037","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are capable of self-renewal and differentiation into various cell types, showing significant potential for cellular therapies and regenerative medicine, particularly in cardiovascular diseases. The differentiation to cardiomyocytes replicates the embryonic heart development, potentially supporting cardiac regeneration. Cardiomyogenesis is controlled by complex post-transcriptional regulation that affects the construction of gene regulatory networks (GRNs), such as: alternative polyadenylation (APA), length changes in untranslated regulatory regions (3'UTRs), and microRNA (miRNA) regulation. To deepen our understanding of the cardiomyogenesis process, we have modeled a GRN for each day of cardiomyocyte differentiation. Then, each GRN was automatically transformed by four transformation rules to a Petri net and simulated using the software VANESA. The Petri nets highlighted the relationship between genes and alternative isoforms, emphasizing the inhibition of miRNA on APA isoforms with varying 3'UTR lengths. Moreover, <i>in silico</i> simulation of miRNA knockout enabled the visualization of the consequential effects on isoform expression. Our Petri net models provide a resourceful tool and holistic perspective to investigate the functional orchestra of transcript regulation that differentiate hESCs to cardiomyocytes. Additionally, the models can be adapted to investigate post-transcriptional GRN in other biological contexts.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327202/pdf/","citationCount":"0","resultStr":"{\"title\":\"Petri net modeling and simulation of post-transcriptional regulatory networks of human embryonic stem cell (hESC) differentiation to cardiomyocytes.\",\"authors\":\"Aruana F F Hansel-Fröse, Christoph Brinkrolf, Marcel Friedrichs, Bruno Dallagiovanna, Lucia Spangenberg\",\"doi\":\"10.1515/jib-2024-0037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cells are capable of self-renewal and differentiation into various cell types, showing significant potential for cellular therapies and regenerative medicine, particularly in cardiovascular diseases. The differentiation to cardiomyocytes replicates the embryonic heart development, potentially supporting cardiac regeneration. Cardiomyogenesis is controlled by complex post-transcriptional regulation that affects the construction of gene regulatory networks (GRNs), such as: alternative polyadenylation (APA), length changes in untranslated regulatory regions (3'UTRs), and microRNA (miRNA) regulation. To deepen our understanding of the cardiomyogenesis process, we have modeled a GRN for each day of cardiomyocyte differentiation. Then, each GRN was automatically transformed by four transformation rules to a Petri net and simulated using the software VANESA. The Petri nets highlighted the relationship between genes and alternative isoforms, emphasizing the inhibition of miRNA on APA isoforms with varying 3'UTR lengths. Moreover, <i>in silico</i> simulation of miRNA knockout enabled the visualization of the consequential effects on isoform expression. Our Petri net models provide a resourceful tool and holistic perspective to investigate the functional orchestra of transcript regulation that differentiate hESCs to cardiomyocytes. Additionally, the models can be adapted to investigate post-transcriptional GRN in other biological contexts.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12327202/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2024-0037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2024-0037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

干细胞能够自我更新并分化成各种细胞类型,在细胞治疗和再生医学方面显示出巨大的潜力,特别是在心血管疾病方面。向心肌细胞的分化复制了胚胎心脏的发育,可能支持心脏再生。心肌发生受复杂的转录后调控控制,影响基因调控网络(grn)的构建,如:选择性聚腺苷化(APA)、非翻译调控区域(3'UTRs)的长度变化和microRNA (miRNA)调控。为了加深我们对心肌形成过程的理解,我们为心肌细胞分化的每一天建立了一个GRN模型。然后,通过4条变换规则将每个GRN自动变换为Petri网,并利用VANESA软件进行仿真。Petri网强调了基因与备选亚型之间的关系,强调了miRNA对不同3'UTR长度的APA亚型的抑制作用。此外,miRNA敲除的计算机模拟能够可视化对异构体表达的相应影响。我们的Petri网模型提供了一个丰富的工具和整体的视角来研究将hESCs分化为心肌细胞的转录调控的功能组合。此外,该模型可用于研究其他生物学背景下的转录后GRN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petri net modeling and simulation of post-transcriptional regulatory networks of human embryonic stem cell (hESC) differentiation to cardiomyocytes.

Stem cells are capable of self-renewal and differentiation into various cell types, showing significant potential for cellular therapies and regenerative medicine, particularly in cardiovascular diseases. The differentiation to cardiomyocytes replicates the embryonic heart development, potentially supporting cardiac regeneration. Cardiomyogenesis is controlled by complex post-transcriptional regulation that affects the construction of gene regulatory networks (GRNs), such as: alternative polyadenylation (APA), length changes in untranslated regulatory regions (3'UTRs), and microRNA (miRNA) regulation. To deepen our understanding of the cardiomyogenesis process, we have modeled a GRN for each day of cardiomyocyte differentiation. Then, each GRN was automatically transformed by four transformation rules to a Petri net and simulated using the software VANESA. The Petri nets highlighted the relationship between genes and alternative isoforms, emphasizing the inhibition of miRNA on APA isoforms with varying 3'UTR lengths. Moreover, in silico simulation of miRNA knockout enabled the visualization of the consequential effects on isoform expression. Our Petri net models provide a resourceful tool and holistic perspective to investigate the functional orchestra of transcript regulation that differentiate hESCs to cardiomyocytes. Additionally, the models can be adapted to investigate post-transcriptional GRN in other biological contexts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信