{"title":"Surface Sulfided NiMoO4 Rod-Like Electrocatalysts for Efficient Hydrogen Evolution Reaction","authors":"Chen Hu, Tingting Wang, Le Chen, Qi Xue, Jiawei Feng, Xiaojing Liu, Xinxia Ma, Daolei Wang, Jiang Wu, Ping He, Yilin Guo, Haoyun Ni","doi":"10.1007/s12678-024-00903-9","DOIUrl":"10.1007/s12678-024-00903-9","url":null,"abstract":"<div><p>As energy resources become increasingly scarce and environmental issues grow more pressing, hydrogen is emerging as a promising alternative to traditional fuels. In this work, rod-shaped NiMoO<sub>4</sub>-Sx-c electrolytic water HER catalysts with surface particles attached were prepared by solvothermal vulcanization and calcination reduction based on the configuration of NiMoO<sub>4</sub> precursors with different NiMo atom ratios. NiMoO<sub>4</sub> Sx-c achieved current densities of 10 mA cm<sup>−2</sup> and 100 mA cm<sup>−2</sup> at overpotentials of 105 mV and 256 mV, respectively. At 100 mA cm<sup>−2</sup>, the catalytic performance of the electrode did not change within 50 h, which proved that the treated catalyst had excellent stability. The excellent HER performance was attributed to the formation of cross-linked NiS<sub>2</sub> and MoS<sub>2</sub> heterostructures on its surface due to the vulcanization and calcination reduction processes, thereby increasing the H adsorption energy. Concurrently, during the vulcanization process, particles were deposited on the surface of the smooth rod-like structure, which improved the hydrophilic/hydrophobic properties of the catalyst, enhanced the diffusion of the electrolyte, and ensured the rapid release of bubbles. This research not only provides a new strategy for synthesizing efficient HER electrocatalysts but also promotes the development of efficient electrolytic water catalysts.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"106 - 116"},"PeriodicalIF":2.7,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-22DOI: 10.1007/s12678-024-00902-w
Yuanjun Sun, Zelin Li, Fei Zhu, Fei Yin, Songwei Ge, Fairy Fan Yang, Lili Gao, Guoju Chen, Fan Yang, Ping Hu
{"title":"Chemical Coprecipitation-Thermal Synthesis of Nano-Ni-Co Alloy for Efficient Hydrogen and Oxygen Evolution Reactions","authors":"Yuanjun Sun, Zelin Li, Fei Zhu, Fei Yin, Songwei Ge, Fairy Fan Yang, Lili Gao, Guoju Chen, Fan Yang, Ping Hu","doi":"10.1007/s12678-024-00902-w","DOIUrl":"10.1007/s12678-024-00902-w","url":null,"abstract":"<div><p>Transition metals from the d-group, specifically Fe, Co, and Ni, have demonstrated exceptional electrocatalytic performance as non-noble metal electrocatalysts for water splitting in alkaline electrolytes. In this study, nanostructured Ni-Co alloy electrocatalysts were synthesized using a chemical coprecipitation-thermal method and tested in a 1 M KOH alkaline solution. Five distinct nano-Ni-Co alloy electrodes, each with unique morphologies and structures, were fabricated by varying the composition. The nano-Ni-Co alloy facilitates the adsorption and desorption of H<sup>+</sup> and OH<sup>−</sup> ions, thereby enhancing the efficiency of hydrogen and oxygen evolution reactions (HER and OER). Among the tested alloys, the NiCo1 alloy exhibited outstanding electrocatalytic activity in alkaline media, with overpotentials of 267.6 mV for HER and 158.5 mV for OER at 40 mA cm<sup>−2</sup>. This work demonstrates a simple and effective synthetic route for integral water decomposition, highlighting the potential of Ni-Co alloys for practical applications in the energy sector.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"96 - 105"},"PeriodicalIF":2.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-16DOI: 10.1007/s12678-024-00898-3
Nishath Afza, M. S. Shivakumar, M. Mylarappa, S. Anil Subash, C. R. Ravikumar, T. M. Sharanakumar, M. N. Somashekar
{"title":"Novel Ni-MoO3/rGO-Modified Electrodes for Selective, Sensitive Detection of Vitamin-C and Its Supercapacitor Application","authors":"Nishath Afza, M. S. Shivakumar, M. Mylarappa, S. Anil Subash, C. R. Ravikumar, T. M. Sharanakumar, M. N. Somashekar","doi":"10.1007/s12678-024-00898-3","DOIUrl":"10.1007/s12678-024-00898-3","url":null,"abstract":"<div><p>The ubiquitous and indispensable nature of ascorbic acid, commonly known as vitamin-C, has spurred significant interest in developing precise and efficient biosensing techniques for its detection. As an essential micronutrient and potent antioxidant, the monitoring of vitamin-C levels holds importance in maintaining human health and preventing various diseases for that we have synthesis the novel Nickel doped Molybdenum Oxide (Ni-MoO<sub>3</sub>) on reduced graphene oxide composite by hydrothermal method. This study extensively investigates the composite’s phase composition, morphology, surface area, and functional groups using various characterization techniques. The electrochemical studies exhibit the nanocomposites favorable electrochemical reversibility, low charge transfer resistance (<i>R</i><sub>ct</sub>), and enhanced double-layer capacitance (<i>C</i><sub>dl</sub>). Importantly, the Ni-MoO<sub>3</sub>/rGO nanocomposite exhibited noteworthy electro-catalytic performance. These findings highlight the potential of synthesized composite as an efficient electro-catalyst with promising applications in energy conversion and storage technologies. The synthesized Ni-MoO<sub>3</sub>/rGO was drop coated on a screen-printed carbon electrode (SPCE) nanocomposite electrode, which was used to measure ascorbic acid and vitamin-C tablet, a commercial tablet for its commercial usage, with a linear range of 50–400 µM and a potential range of 0.0 to 1.5 V by using two samples: ascorbic acid with LOD = 3.1268 mM, and LOQ = 5.473 mM at pH-7 phosphate buffer solution with sensitivity of 0.1739 µAµM<sup>−1</sup> cm<sup>−2</sup>.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"78 - 95"},"PeriodicalIF":2.7,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Selective And Sensitive Electrochemical Detection of Trace Level Al (III) Ions in Water by Antipyrine Schiff’s Base-Modified Glassy Carbon Electrode","authors":"Md Zainul Abedeen, Priya Yadav, Manish Sharma, Lalita Yadav, Priya Sharma, Himmat Singh Kushwaha, Ragini Gupta","doi":"10.1007/s12678-024-00899-2","DOIUrl":"10.1007/s12678-024-00899-2","url":null,"abstract":"<div><p>Abundant use of aluminum cookware and treatment of high fluoride-containing water with aluminum salts results in the discharge of aluminum ions into water bodies and food items, causing harmful effects on human health. Herein, an electrochemical sensor for sensing the Al (III) ions by modification of glassy carbon electrode (GCE) with Schiff’s base ligand as an electrocatalyst and activated charcoal as an electro-conductive material is being reported. The response is recorded via Square wave voltammetry (SWV) for the modified GCE, resulting in a characteristic peak at potential 0.4 V due to the interaction of the Al (III) ions with the electrocatalyst. The peak current intensity increases linearly in the concentration range from 0.1 – 50 µM (R<sup>2</sup> = 0.994), and the detection limit of 45 nM (S/N = 3) was calculated. DFT calculation reveals that the energy gap between the HOMO and LUMO decreases from 0.551 eV to 0.303 eV after the complexation of the ligand with the Al (III) ions indicating the stability enhancement after complex formation. Common interfering agents do not significantly change in the peak current intensity, demonstrating excellent selectivity. Spiking Al (III) ions in tap and river water checked practical applicability, which gave satisfactory recovery results.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"67 - 77"},"PeriodicalIF":2.7,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-11DOI: 10.1007/s12678-024-00901-x
Eleilde de Sousa Oliveira, Adolfo Lopes Figueredo, Maitê Lippel Gothe, Pedro Vidinha, Auro Atsushi Tanaka, Marco Aurélio Suller Garcia
{"title":"Optimizing Metal-free Phenanthroline-assisted Nitrogen-doped Reduced Graphene Oxide for Enhanced Oxygen Reduction Reaction: An Experimental Design and Performance Study","authors":"Eleilde de Sousa Oliveira, Adolfo Lopes Figueredo, Maitê Lippel Gothe, Pedro Vidinha, Auro Atsushi Tanaka, Marco Aurélio Suller Garcia","doi":"10.1007/s12678-024-00901-x","DOIUrl":"10.1007/s12678-024-00901-x","url":null,"abstract":"<div><p>Developing efficient and cost-effective oxygen reduction reaction (ORR) catalysts is critical for advancing fuel cell technologies. Based on this, we propose a metal-free reduced graphene oxide (rGO) catalyst produced from graphite as a base material for electrode modification. Nevertheless, by using phenanthroline as a nitrogen precursor, we investigated different synthesis conditions to adjust the electrocatalytic characteristics of the material precisely, aiming for a four-electron mechanism with low onset potential. A comprehensive experimental design revealed that specific preparation parameters (75 mg of phenanthroline, 1079 °C, and 1.73 h) significantly influenced the catalyst’s performance: the optimized catalyst had an increase in current density and a positive shift in the half-wave potential compared to other materials that underwent not optimized synthetic conditions. Morphological and physicochemical characterizations, including SEM and XPS analyses, provided insights into the material’s structure and composition, correlating the observed catalytic performance with graphitic nitrogen and an optimized degree of deoxygenation. Crucially, our study demonstrated a method for achieving varied levels of nitrogen species with the same nitrogen precursor, revealing that, under optimized conditions, the same precursor can yield diverse outcomes. Importantly, the optimized catalyst demonstrated impressive performance, showing only a 0.1 V difference in onset potential compared to the commercial Pt/C catalyst and a limiting current density of 2.1 mA cm<sup>−2</sup>. Thus, this study underscores the importance of systematic experimental design and optimization in developing high-performance, metal-free electrocatalysts for energy conversion applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"54 - 66"},"PeriodicalIF":2.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-11DOI: 10.1007/s12678-024-00897-4
Meng Yu, Wenzheng Wang, Pengjie Wu, Hongyu Wen
{"title":"CNT@Ti3C2TxMXene Nanocomposite Catalysts as Anodes to Improve the Electricity Production Performance of Microbial Fuel Cells","authors":"Meng Yu, Wenzheng Wang, Pengjie Wu, Hongyu Wen","doi":"10.1007/s12678-024-00897-4","DOIUrl":"10.1007/s12678-024-00897-4","url":null,"abstract":"<div><p>The inherent disadvantages of carbon-based anodes, including their low hydrophilicity, significant charge transfer resistance, and limited power density, hinder their widespread commercial utilization in microbial fuel cells (MFC). Addressing these challenges, this study involved the surface modification of a carbon-based anode. To improve the adhesion of electroactive microorganisms (EAM) on the anode surface and increase the extracellular electron transfer rate, CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene was applied to the surface of carbon cloth (CC) using drip coating. Initially, we conducted a comprehensive investigation on the optimal amount of modification required. To achieve this, we designed four distinct groups of modified electrodes. Through electrochemical analysis and phase characterization, it was determined that a modification dosage of 1.5 mg/cm<sup>2</sup> for CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene/CC electrodes yielded the most optimal electrical conductivity and the highest capacitance. The Rs of CC is reduced from 1.48 to 0.55 Ω and the Rct from 2.62 to 2.09 Ω, and the capacitance is increased from 3.98 10<sup>−07</sup><i>F</i> to 9.11 10<sup>−06</sup><i>F</i>. Subsequently, the CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene/CC with a modification of 1.5 mg/cm<sup>2</sup> was used as the anode of the microbial fuel cell. The modification of CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene improved the power generation performance. The maximum output voltage of the MFC was increased from 546 to 709 mv, and the power density was increased from 44.9 to 101.8 mW/m<sup>2</sup>. The underlying factor lies in the ability of CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene/CC to significantly lower the internal resistance within the microbial fuel cell, thereby fostering the development of biofilm. Notably, our observations revealed that the biofilm formation was particularly facilitated on the anode surface of CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene/CC. In essence, the CNT@Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>MXene-modified carbon cloth not only minimizes internal resistance but also enhances the electroactive surface area, exhibiting superior electrical conductivity. These attributes make it an advantageous material for biological applications.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"42 - 53"},"PeriodicalIF":2.7,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142858596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-09DOI: 10.1007/s12678-024-00900-y
Kusumita Dutta, S. Pushpavanam
{"title":"A Molecularly Imprinted Composite-based Novel Electrochemical Sensor Using o-Phenylenediamine, Molybdenum Nanoparticle, and Multiwalled Carbon Nanotube for Triclosan Detection from Water","authors":"Kusumita Dutta, S. Pushpavanam","doi":"10.1007/s12678-024-00900-y","DOIUrl":"10.1007/s12678-024-00900-y","url":null,"abstract":"<div><p>A novel electrochemical molecularly imprinted composite (MIC)-based sensor for detection of triclosan was developed. MIC was synthesized from o-phenylenediamine (o–PD), -COOH functionalized multiwalled carbon nanotube (<i>cf</i>-MWCNT), and triclosan by cyclic voltammetry on molybdenum nanoparticle (Mo-NP) embedded <i>cf</i>-MWCNT (Mo-<i>cf</i>-MWCNT) coated glassy carbon (GC) electrode, following removal of surface triclosan to form MIC/Mo-<i>cf</i>-MWCNT/GC. In our earlier work, two novel electrodes MIC/<i>cf</i>-MWCNT/GC and MIC/GC were fabricated. The presence of <i>cf</i>-MWCNT coating substrate on GC in MIC/<i>cf</i>-MWCNT/GC had improved the sensing performance than MIC/GC since presence of this substrate had decreased the electrochemical band gap (<i>E</i><sub><i>g</i></sub>) and increased Debye length (<i>λ</i><sub><i>d</i></sub>), Gibb’s free energy of adsorption (− <i>ΔG</i><sub>ads</sub>), electrochemical surface area (<i>A</i><sub><i>e</i></sub>), and surface redox site concentration (<i>C</i>*). Therefore, further improvement in sensing performance can be carried out by utilizing Mo-NP in the <i>cf</i>-MWCNT coating substrate using MIC to be the sensing material. This novel electrode (MIC/Mo-<i>cf</i>-MWCNT/GC) provided a limit of detection (LOD) of 900 ppt of triclosan, which was lower than the LOD achieved by using MIC/<i>cf-</i>MWCNT/GC (10 ppb) and MIC/GC (40 ppb). Adsorption isotherm was constructed for MIC/Mo-<i>cf</i>-MWCNT/GC delivering − <i>ΔG</i><sub>ads</sub> value of 59.049 kJ/mol indicating stronger chemisorption. To understand the role of Mo-<i>cf</i>-MWCNT in detection of triclosan, cyclic voltammetry, electrochemical impedance spectroscopy, and electrochemical band gap studies were conducted. This MIC/Mo-<i>cf</i>-MWCNT/GC showed good selectivity towards triclosan in presence of interfering ions.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 6","pages":"529 - 540"},"PeriodicalIF":2.7,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-05DOI: 10.1007/s12678-024-00891-w
Aswathi Mechoor, K. S. Lavanya Shri, Sheela Berchmans, V. Ganesh
{"title":"Mo-Incorporated Bimetallic Metal–Organic Framework for Electrochemical Detection of Hydrogen Peroxide: A Potential Biomimic System","authors":"Aswathi Mechoor, K. S. Lavanya Shri, Sheela Berchmans, V. Ganesh","doi":"10.1007/s12678-024-00891-w","DOIUrl":"10.1007/s12678-024-00891-w","url":null,"abstract":"<div><p>In this work, a peroxidase enzyme mimic is demonstrated using Mo-incorporated Cu@ZIF-8 and showed the electrochemical detection of hydrogen peroxide. Further, TMB, a chromogenic substrate, is introduced to enhance the kinetics and sensor performance of the resultant enzyme mimic. A significant gain in the overpotential value of 0.2 V and lower <i>K</i><sub>M</sub> value is noted for the sensor upon introducing TMB. The characteristic kinetic parameters are determined, and a possible mechanism is elucidated for the proposed hydrogen peroxide sensor.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"28 - 41"},"PeriodicalIF":2.7,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ElectrocatalysisPub Date : 2024-10-01DOI: 10.1007/s12678-024-00896-5
Faiq Saeed, Samia, Mushtaq Ahmad, Waheed Rehman, Yasir Sana, Somavia Ameen, A. S. Altowyan, Amir Zada
{"title":"Sulfur-Doped Zinc Oxide-Nikel Oxide as Efficient Bifunctional Electrocatalyst for Overall Water Splitting","authors":"Faiq Saeed, Samia, Mushtaq Ahmad, Waheed Rehman, Yasir Sana, Somavia Ameen, A. S. Altowyan, Amir Zada","doi":"10.1007/s12678-024-00896-5","DOIUrl":"10.1007/s12678-024-00896-5","url":null,"abstract":"<div><p>A mixed sulfur-doped zinc oxide-nickel oxide (S@ZnO-NiO) nanocomposite electrocatalyst for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) was prepared by hydrothermal method; we prepared a high-efficiency bifunctional electrocatalyst S@ZnO-NiO. By applying different characterizations, the material was proven as a new phase of (S-doped-ZnO-NiO). S@ZnO-NiO showed excellent performance at 10 mA cm<sup>−2</sup>, the generation potential of OER is 1.45 V, and that of HER is − 0.04 V. Furthermore, when applied for water splitting electrocatalysis, a current density of 10 mA cm<sup>−2</sup> was achieved at 1.49 V with excellent stability for 10 h. S@ZnO-NiO bifunctional catalysts offer great potential for electrochemical devices due to their low cost and high activity. We have successfully constructed an electrocatalyst with the dual functions of HER and OER, which can achieve efficient water splitting.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 1","pages":"15 - 27"},"PeriodicalIF":2.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142859474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Fabrication and Properties of NiCoP Nanocrystalline Thin Film Electrodes for Hydrogen Evolution Electrocatalysts","authors":"Huibin Yuan, Xiangzhu He, Yuelan Yang, Jiahe Xie, Binjie Wu, Xiangjian Zeng, Shuxun Zeng","doi":"10.1007/s12678-024-00893-8","DOIUrl":"10.1007/s12678-024-00893-8","url":null,"abstract":"<div><p>Hydrogen production from water splitting is considered the most environment-friendly and sustainable method to acquire energy. Alkaline water electrolysis has been widely employed for hydrogen production, but it is still challenging to prepare non-precious metals electrocatalysts to replace the noble-metal-based catalysts. Here we proposed electroless method to prepare a NiCoP nanocrystalline thin flim as efficient electrocatalysts. The morphology and mechanisms of the 45-minute alloy films deposited on Cu substrate were characterized by SEM, XRD, and XPS techniques, moreover, LSV, EIS, and CP were applied to analyze the electrochemical behavior. The nanocrystalline NiCoP<sub>45min</sub> alloy exhibits higher hydrogen evolution reaction (HER) activity than platinum sheet. An overpotential of -98 mV and a Tafel slope of 47.94 mV·dec<sup>−1</sup> at 10 mA·cm<sup>−2</sup> was achieved with the catalyst during HER in an alkaline medium. Additionally, its excellent catalytic activity is confirmed by a low Rt value 2.48 Ω. Remarkably, this catalyst also exhibits high HER stability for about 45 h in an alkaline electrolysic solution.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"15 6","pages":"519 - 528"},"PeriodicalIF":2.7,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142438823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}