聚苯胺氧化峰间接电化学检测双氯芬酸钠

IF 2.7 4区 化学 Q3 CHEMISTRY, PHYSICAL
Gulmira Rakhymbay, Florence Vacandio, Khaisa Avchukir
{"title":"聚苯胺氧化峰间接电化学检测双氯芬酸钠","authors":"Gulmira Rakhymbay,&nbsp;Florence Vacandio,&nbsp;Khaisa Avchukir","doi":"10.1007/s12678-024-00914-6","DOIUrl":null,"url":null,"abstract":"<div><p>The unusual electrochemical, catalytic, and electronic properties of conductive polymer composites with metal oxides, owing to their synergistic effects, have attracted continued interest in the past decade for diverse applications in electroanalysis and electrocatalysis. Herein, we present a novel method for indirect determination of diclofenac (DCF) sodium using a PANI|In<sub>2</sub>O<sub>3</sub> composite. A glassy carbon electrode (GCE) modified with a thin PANI|In<sub>2</sub>O<sub>3</sub> layer was synthesized by cyclic voltammetry (CV) from a 0.3 M H<sub>2</sub>SO<sub>4</sub> solution. Electrochemical impedance spectroscopy (EIS) measurements demonstrated that the PANI|In<sub>2</sub>O<sub>3</sub> composite has a significantly higher R<sub>ct</sub> value 624.0 Ω than the pure polyaniline film (14.0 Ω). CVs of bare GCE demonstrated the irreversible oxidation of diclofenac, characterized by an anodic peak at a potential of 0.6 V. Differential pulse voltammograms (DPVs) of DCF on a GCE|PANI electrode showed two pronounced anodic peaks (<i>j</i><sub><i>pa</i></sub>), which were responsible for the electrochemical oxidation of polyaniline (I) and oxidation of DCF (II). Modification with In<sub>2</sub>O<sub>3</sub> dramatically decreased the current density of peak II by inhibiting the oxidation of DCF, and on the contrary, it increased the intensity of peak I tens of times. The GC|PANI|In<sub>2</sub>O<sub>3</sub> electrode can be used as an electrochemical sensor for the determination of diclofenac at low concentrations between 1 × 10<sup>–6</sup> M to 1 × 10<sup>–4</sup> M, and <i>j</i><sub><i>pa</i></sub> – <i>C</i><sub><i>DCF</i></sub> has a correlation coefficient of 0.95. The GC|PANI|In<sub>2</sub>O<sub>3</sub> material exhibited a limit of detection of 181 nM and a linear range of 1–100 µM for the DCF sensor.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"16 2","pages":"282 - 291"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using PANI|In2O3 Composite for Indirect Electrochemical Detection of Diclofenac Sodium via Polyaniline Oxidation Peak\",\"authors\":\"Gulmira Rakhymbay,&nbsp;Florence Vacandio,&nbsp;Khaisa Avchukir\",\"doi\":\"10.1007/s12678-024-00914-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unusual electrochemical, catalytic, and electronic properties of conductive polymer composites with metal oxides, owing to their synergistic effects, have attracted continued interest in the past decade for diverse applications in electroanalysis and electrocatalysis. Herein, we present a novel method for indirect determination of diclofenac (DCF) sodium using a PANI|In<sub>2</sub>O<sub>3</sub> composite. A glassy carbon electrode (GCE) modified with a thin PANI|In<sub>2</sub>O<sub>3</sub> layer was synthesized by cyclic voltammetry (CV) from a 0.3 M H<sub>2</sub>SO<sub>4</sub> solution. Electrochemical impedance spectroscopy (EIS) measurements demonstrated that the PANI|In<sub>2</sub>O<sub>3</sub> composite has a significantly higher R<sub>ct</sub> value 624.0 Ω than the pure polyaniline film (14.0 Ω). CVs of bare GCE demonstrated the irreversible oxidation of diclofenac, characterized by an anodic peak at a potential of 0.6 V. Differential pulse voltammograms (DPVs) of DCF on a GCE|PANI electrode showed two pronounced anodic peaks (<i>j</i><sub><i>pa</i></sub>), which were responsible for the electrochemical oxidation of polyaniline (I) and oxidation of DCF (II). Modification with In<sub>2</sub>O<sub>3</sub> dramatically decreased the current density of peak II by inhibiting the oxidation of DCF, and on the contrary, it increased the intensity of peak I tens of times. The GC|PANI|In<sub>2</sub>O<sub>3</sub> electrode can be used as an electrochemical sensor for the determination of diclofenac at low concentrations between 1 × 10<sup>–6</sup> M to 1 × 10<sup>–4</sup> M, and <i>j</i><sub><i>pa</i></sub> – <i>C</i><sub><i>DCF</i></sub> has a correlation coefficient of 0.95. The GC|PANI|In<sub>2</sub>O<sub>3</sub> material exhibited a limit of detection of 181 nM and a linear range of 1–100 µM for the DCF sensor.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":535,\"journal\":{\"name\":\"Electrocatalysis\",\"volume\":\"16 2\",\"pages\":\"282 - 291\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrocatalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12678-024-00914-6\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-024-00914-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

导电聚合物复合材料与金属氧化物具有不同寻常的电化学、催化和电子性能,由于它们的协同效应,在过去十年中在电分析和电催化方面的各种应用引起了人们的持续关注。本文提出了一种利用聚苯胺|In2O3复合材料间接测定双氯芬酸钠的新方法。用循环伏安法(CV)在0.3 M H2SO4溶液中合成了一层薄聚苯胺|In2O3修饰的玻碳电极(GCE)。电化学阻抗谱(EIS)测试表明,PANI|In2O3复合材料的Rct值(624.0 Ω)明显高于纯聚苯胺膜(14.0 Ω)。裸GCE的cv显示双氯芬酸的不可逆氧化,其特征是在0.6 V电位下出现阳极峰。DCF在GCE|PANI电极上的差分脉冲伏安图(DPVs)显示出两个明显的阳极峰(jpa),这两个阳极峰负责聚苯胺(I)的电化学氧化和DCF (II)的氧化。In2O3改性通过抑制DCF的氧化,显著降低了II峰的电流密度,相反,使I峰的强度增加了数十倍。GC|PANI|In2O3电极可作为电化学传感器用于测定1 × 10-6 M ~ 1 × 10-4 M低浓度双氯芬酸,jpa - CDCF的相关系数为0.95。GC|PANI|In2O3材料对DCF传感器的检测限为181 nM,线性范围为1-100µM。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using PANI|In2O3 Composite for Indirect Electrochemical Detection of Diclofenac Sodium via Polyaniline Oxidation Peak

The unusual electrochemical, catalytic, and electronic properties of conductive polymer composites with metal oxides, owing to their synergistic effects, have attracted continued interest in the past decade for diverse applications in electroanalysis and electrocatalysis. Herein, we present a novel method for indirect determination of diclofenac (DCF) sodium using a PANI|In2O3 composite. A glassy carbon electrode (GCE) modified with a thin PANI|In2O3 layer was synthesized by cyclic voltammetry (CV) from a 0.3 M H2SO4 solution. Electrochemical impedance spectroscopy (EIS) measurements demonstrated that the PANI|In2O3 composite has a significantly higher Rct value 624.0 Ω than the pure polyaniline film (14.0 Ω). CVs of bare GCE demonstrated the irreversible oxidation of diclofenac, characterized by an anodic peak at a potential of 0.6 V. Differential pulse voltammograms (DPVs) of DCF on a GCE|PANI electrode showed two pronounced anodic peaks (jpa), which were responsible for the electrochemical oxidation of polyaniline (I) and oxidation of DCF (II). Modification with In2O3 dramatically decreased the current density of peak II by inhibiting the oxidation of DCF, and on the contrary, it increased the intensity of peak I tens of times. The GC|PANI|In2O3 electrode can be used as an electrochemical sensor for the determination of diclofenac at low concentrations between 1 × 10–6 M to 1 × 10–4 M, and jpaCDCF has a correlation coefficient of 0.95. The GC|PANI|In2O3 material exhibited a limit of detection of 181 nM and a linear range of 1–100 µM for the DCF sensor.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrocatalysis
Electrocatalysis CHEMISTRY, PHYSICAL-ELECTROCHEMISTRY
CiteScore
4.80
自引率
6.50%
发文量
93
审稿时长
>12 weeks
期刊介绍: Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies. Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信