E. Audusse, V. Dubos, A. Duran, Noémie Gaveau, Y. Nasseri, Y. Penel
{"title":"Numerical approximation of the shallow water equations with coriolis source term","authors":"E. Audusse, V. Dubos, A. Duran, Noémie Gaveau, Y. Nasseri, Y. Penel","doi":"10.1051/PROC/202107003","DOIUrl":"https://doi.org/10.1051/PROC/202107003","url":null,"abstract":"We investigate in this work a class of numerical schemes dedicated to the non-linear Shallow Water equations with topography and Coriolis force. The proposed algorithms rely on Finite Volume approximations formulated on collocated and staggered meshes, involving appropriate diffusion terms in the numerical fluxes, expressed as discrete versions of the linear geostrophic balance. It follows that, contrary to standard Finite-Volume approaches, the linear versions of the proposed schemes provide a relevant approximation of the geostrophic equilibrium. We also show that the resulting methods ensure semi-discrete energy estimates. Numerical experiments exhibit the efficiency of the approach in the presence of Coriolis force close to the geostrophic balance, especially at low Froude number regimes.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91056074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. Benyo, A. Charhabil, Mohamed Ali Debyaoui, Y. Penel
{"title":"Simulation of complex free surface flows","authors":"K. Benyo, A. Charhabil, Mohamed Ali Debyaoui, Y. Penel","doi":"10.1051/PROC/202107004","DOIUrl":"https://doi.org/10.1051/PROC/202107004","url":null,"abstract":"We study the Serre-Green-Naghdi system under a non-hydrostatic formulation, modelling incompressible free surface flows in shallow water regimes. This system, unlike the well-known (nonlinear) Saint-Venant equations, takes into account the effects of the non-hydrostatic pressure term as well as dispersive phenomena. Two numerical schemes are designed, based on a finite volume - finite difference type splitting scheme and iterative correction algorithms. The methods are compared by means of simulations concerning the propagation of solitary wave solutions. The model is also assessed with experimental data concerning the Favre secondary wave experiments [12].","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85259471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Goal-oriented adaptive sampling under random field modelling of response probability distributions","authors":"Ath'enais Gautier, D. Ginsbourger, G. Pirot","doi":"10.1051/proc/202171108","DOIUrl":"https://doi.org/10.1051/proc/202171108","url":null,"abstract":"In the study of natural and artificial complex systems, responses that are not completely determined by the considered decision variables are commonly modelled probabilistically, resulting in response distributions varying across decision space. We consider cases where the spatial variation of these response distributions does not only concern their mean and/or variance but also other features including for instance shape or uni-modality versus multi-modality. Our contributions build upon a non-parametric Bayesian approach to modelling the thereby induced fields of probability distributions, and in particular to a spatial extension of the logistic Gaussian model. The considered models deliver probabilistic predictions of response distributions at candidate points, allowing for instance to perform (approximate) posterior simulations of probability density functions, to jointly predict multiple moments and other functionals of target distributions, as well as to quantify the impact of collecting new samples on the state of knowledge of the distribution field of interest. In particular, we introduce adaptive sampling strategies leveraging the potential of the considered random distribution field models to guide system evaluations in a goal-oriented way, with a view towards parsimoniously addressing calibration and related problems from non-linear (stochastic) inversion and global optimisation.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"95 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77011036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emmanuel Audusse, Joao Guilherme, Caldas Steinstraesser, Louis Emerald, Philippe Heinrich, A. Paris, Martin Parisot, J. G. C. Steinstraesser
{"title":"Comparison of models for the simulation of landslide generated Tsunamis","authors":"Emmanuel Audusse, Joao Guilherme, Caldas Steinstraesser, Louis Emerald, Philippe Heinrich, A. Paris, Martin Parisot, J. G. C. Steinstraesser","doi":"10.1051/PROC/202107002","DOIUrl":"https://doi.org/10.1051/PROC/202107002","url":null,"abstract":"In this paper, we analyze the relevance of the use of the shallow water model and the Boussinesq model to simulate tsunamis generated by a landslide. In a first part, we determine if the two models are able to reproduce waves generated by a landslide. Each model has drawbacks but it seems that it is possible to use them together to improve the simulations. In a second part we try to recover the landslide displacement from the generated wave. This problem is formulated as a minimization problem and we limit the number of parameters to determine assuming that the bottom can be well described by an empirical law.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83233801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bilal Al-Taki, Kevin Atsou, Jean-J'erome Casanova, T. Goudon, P. Lafitte, F. Lagoutière, S. Minjeaud
{"title":"Numerical investigations of the compressible Navier-Stokes system","authors":"Bilal Al-Taki, Kevin Atsou, Jean-J'erome Casanova, T. Goudon, P. Lafitte, F. Lagoutière, S. Minjeaud","doi":"10.1051/PROC/202107001","DOIUrl":"https://doi.org/10.1051/PROC/202107001","url":null,"abstract":"In this paper we write, analyze and experimentally compare three different numerical schemes dedicated to the one dimensional barotropic Navier-Stokes equations: a staggered scheme based on the Rusanov one for the inviscid (Euler) system,a staggered pseudo-Lagrangian scheme in which the mesh “follows” the fluid,the Eulerian projection (on a fixed mesh) of the preceding scheme. All these schemes only involve the resolution of linear systems (all the nonlinear terms are solved in an explicit way). We propose numerical illustrations of their behaviors on particular solutions in which the density has discontinuities (hereafter called Hoff solutions). We show that the three schemes seem to converge to the same solutions, and we compare the evolution of the amplitude of the discontinuity of the numerical solution (with the pseudo-Lagrangian scheme) with the one predicted by Hoff and observe a good agreement.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"150 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75767107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Sarto, Erwan Deriaz, Xavier Lhébrard, Mathieu Rigal
{"title":"Adaptive wavelet schemes and finite volumes","authors":"D. Sarto, Erwan Deriaz, Xavier Lhébrard, Mathieu Rigal","doi":"10.1051/PROC/202107007","DOIUrl":"https://doi.org/10.1051/PROC/202107007","url":null,"abstract":"We consider a procedure for combining high order finite volumes and tree-based nonuniform grids. Especially, we focus on efficient algorithms for third order multidimensional volume interpolation and communication between levels of refinement. In the end, numerical results are reviewed to validate our approach.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80154399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A lubrication equation for a simplified model of shear-thinning fluid","authors":"F. James, Meissa M'Baye, K. Msheik, D. Nguyen","doi":"10.1051/PROC/202107010","DOIUrl":"https://doi.org/10.1051/PROC/202107010","url":null,"abstract":"A lubrication equation is obtained for a simplified shear-thinning fluid. The simplified rheology consists of a piecewise linear stress tensor, resulting in a two-viscosity model. This can be interpreted as a modified Bingham fluid, which can be recovered in a specific limit. The lubrication equation is obtained in two steps. First two scalings are performed on the incompressible Navier-Stokes equations, namely the long-wave scaling and the slow motion scaling. Second, the resulting equations are averaged along the vertical direction. Numerical illustrations are provided, bringing to light the different possible behaviours.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80760375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jules Guillot, Guillaume Koenig, Kadi Minbashian, E. Frénod, Hélène Flourent, J. Brajard
{"title":"Partial differential equations for oceanic artificial intelligence","authors":"Jules Guillot, Guillaume Koenig, Kadi Minbashian, E. Frénod, Hélène Flourent, J. Brajard","doi":"10.1051/PROC/202107009","DOIUrl":"https://doi.org/10.1051/PROC/202107009","url":null,"abstract":"The Sea Surface Temperature (SST) plays a significant role in analyzing and assessing the dynamics of weather and also biological systems. It has various applications such as weather forecasting or planning of coastal activities. On the one hand, standard physical methods for forecasting SST use coupled ocean- atmosphere prediction systems, based on the Navier-Stokes equations. These models rely on multiple physical hypotheses and do not optimally exploit the information available in the data. On the other hand, despite the availability of large amounts of data, direct applications of machine learning methods do not always lead to competitive state of the art results. Another approach is to combine these two methods: this is data-model coupling. The aim of this paper is to use a model in another domain. This model is based on a data-model coupling approach to simulate and predict SST. We first introduce the original model. Then, the modified model is described, to finish with some numerical results.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"27 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78309354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pierre Cordesse, R. D. Battista, Quentin Chevalier, L. Matuszewski, T. Ménard, S. Kokh, M. Massot
{"title":"A diffuse interface approach for disperse two-phase flows involving dual-scale kinematics of droplet deformation based on geometrical variables","authors":"Pierre Cordesse, R. D. Battista, Quentin Chevalier, L. Matuszewski, T. Ménard, S. Kokh, M. Massot","doi":"10.1051/PROC/202069024","DOIUrl":"https://doi.org/10.1051/PROC/202069024","url":null,"abstract":"The purpose of this contribution is to derive a reduced-order two-phase flow model in- cluding interface subscale modeling through geometrical variables based on Stationary Action Principle (SAP) and Second Principle of Thermodynamics in the spirit of [6, 14]. The derivation is conducted in the disperse phase regime for the sake of clarity but the resulting paradigm can be used in a more general framework. One key issue is the definition of the proper potential and kinetic energies in the Lagrangian of the system based on geometrical variables (Interface area density, mean and Gauss curvatures...), which will drive the subscale kinematics and dissipation, and their coupling with large scales of the flow. While [14] relied on bubble pulsation, that is normal deformation of the interface with shape preservation related to pressure changes, we aim here at tackling inclusion deformation at constant volume, thus describing self-sustained oscillations. In order to identify the proper energies, we use Direct Numerical Simulations (DNS) of oscillating droplets using ARCHER code and recently devel- oped library, Mercur(v)e, for mean geometrical variable evaluation and analysis preserving topological invariants. This study is combined with historical analytical studies conducted in the small perturba- tion regime and shows that the proper potential energy is related to the surface difference compared to the spherical minimal surface. A geometrical quasi-invariant is also identified and a natural definition of subscale momentum is proposed. The set of Partial Differential Equations (PDEs) including the conservation equations as well as dissipation source terms are eventually derived leading to an original two-scale diffuse interface model involving geometrical variables.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"127 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75449271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}