A lubrication equation for a simplified model of shear-thinning fluid

F. James, Meissa M'Baye, K. Msheik, D. Nguyen
{"title":"A lubrication equation for a simplified model of shear-thinning fluid","authors":"F. James, Meissa M'Baye, K. Msheik, D. Nguyen","doi":"10.1051/PROC/202107010","DOIUrl":null,"url":null,"abstract":"A lubrication equation is obtained for a simplified shear-thinning fluid. The simplified rheology consists of a piecewise linear stress tensor, resulting in a two-viscosity model. This can be interpreted as a modified Bingham fluid, which can be recovered in a specific limit. The lubrication equation is obtained in two steps. First two scalings are performed on the incompressible Navier-Stokes equations, namely the long-wave scaling and the slow motion scaling. Second, the resulting equations are averaged along the vertical direction. Numerical illustrations are provided, bringing to light the different possible behaviours.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/202107010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A lubrication equation is obtained for a simplified shear-thinning fluid. The simplified rheology consists of a piecewise linear stress tensor, resulting in a two-viscosity model. This can be interpreted as a modified Bingham fluid, which can be recovered in a specific limit. The lubrication equation is obtained in two steps. First two scalings are performed on the incompressible Navier-Stokes equations, namely the long-wave scaling and the slow motion scaling. Second, the resulting equations are averaged along the vertical direction. Numerical illustrations are provided, bringing to light the different possible behaviours.
剪切变稀流体简化模型的润滑方程
得到了简化剪切-稀化流体的润滑方程。简化后的流变学由一个分段线性应力张量组成,形成一个双粘度模型。这可以解释为一种改良的宾厄姆流体,它可以在特定的限制下恢复。润滑方程分两步得到。首先对不可压缩的Navier-Stokes方程进行了两种尺度变换,即长波尺度变换和慢动作尺度变换。其次,所得方程沿垂直方向取平均值。提供了数值插图,揭示了不同可能的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信