Partial differential equations for oceanic artificial intelligence

Jules Guillot, Guillaume Koenig, Kadi Minbashian, E. Frénod, Hélène Flourent, J. Brajard
{"title":"Partial differential equations for oceanic artificial intelligence","authors":"Jules Guillot, Guillaume Koenig, Kadi Minbashian, E. Frénod, Hélène Flourent, J. Brajard","doi":"10.1051/PROC/202107009","DOIUrl":null,"url":null,"abstract":"The Sea Surface Temperature (SST) plays a significant role in analyzing and assessing the dynamics of weather and also biological systems. It has various applications such as weather forecasting or planning of coastal activities. On the one hand, standard physical methods for forecasting SST use coupled ocean- atmosphere prediction systems, based on the Navier-Stokes equations. These models rely on multiple physical hypotheses and do not optimally exploit the information available in the data. On the other hand, despite the availability of large amounts of data, direct applications of machine learning methods do not always lead to competitive state of the art results. Another approach is to combine these two methods: this is data-model coupling. The aim of this paper is to use a model in another domain. This model is based on a data-model coupling approach to simulate and predict SST. We first introduce the original model. Then, the modified model is described, to finish with some numerical results.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/202107009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Sea Surface Temperature (SST) plays a significant role in analyzing and assessing the dynamics of weather and also biological systems. It has various applications such as weather forecasting or planning of coastal activities. On the one hand, standard physical methods for forecasting SST use coupled ocean- atmosphere prediction systems, based on the Navier-Stokes equations. These models rely on multiple physical hypotheses and do not optimally exploit the information available in the data. On the other hand, despite the availability of large amounts of data, direct applications of machine learning methods do not always lead to competitive state of the art results. Another approach is to combine these two methods: this is data-model coupling. The aim of this paper is to use a model in another domain. This model is based on a data-model coupling approach to simulate and predict SST. We first introduce the original model. Then, the modified model is described, to finish with some numerical results.
海洋人工智能的偏微分方程
海表温度(SST)在分析和评估天气和生物系统的动态方面起着重要作用。它有各种各样的应用,如天气预报或沿海活动的规划。一方面,预测海温的标准物理方法使用基于纳维-斯托克斯方程的耦合海洋-大气预报系统。这些模型依赖于多种物理假设,不能最佳地利用数据中可用的信息。另一方面,尽管有大量数据的可用性,但机器学习方法的直接应用并不总是会产生具有竞争力的最新结果。另一种方法是将这两种方法结合起来:这是数据模型耦合。本文的目的是在另一个领域中使用模型。该模型基于数据模型耦合的方法来模拟和预测海温。我们首先介绍原始模型。然后,对修正后的模型进行了描述,最后给出了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信