可压缩Navier-Stokes系统的数值研究

Bilal Al-Taki, Kevin Atsou, Jean-J'erome Casanova, T. Goudon, P. Lafitte, F. Lagoutière, S. Minjeaud
{"title":"可压缩Navier-Stokes系统的数值研究","authors":"Bilal Al-Taki, Kevin Atsou, Jean-J'erome Casanova, T. Goudon, P. Lafitte, F. Lagoutière, S. Minjeaud","doi":"10.1051/PROC/202107001","DOIUrl":null,"url":null,"abstract":"In this paper we write, analyze and experimentally compare three different numerical schemes dedicated to the one dimensional barotropic Navier-Stokes equations: a staggered scheme based on the Rusanov one for the inviscid (Euler) system,a staggered pseudo-Lagrangian scheme in which the mesh “follows” the fluid,the Eulerian projection (on a fixed mesh) of the preceding scheme. All these schemes only involve the resolution of linear systems (all the nonlinear terms are solved in an explicit way). We propose numerical illustrations of their behaviors on particular solutions in which the density has discontinuities (hereafter called Hoff solutions). We show that the three schemes seem to converge to the same solutions, and we compare the evolution of the amplitude of the discontinuity of the numerical solution (with the pseudo-Lagrangian scheme) with the one predicted by Hoff and observe a good agreement.","PeriodicalId":53260,"journal":{"name":"ESAIM Proceedings and Surveys","volume":"150 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigations of the compressible Navier-Stokes system\",\"authors\":\"Bilal Al-Taki, Kevin Atsou, Jean-J'erome Casanova, T. Goudon, P. Lafitte, F. Lagoutière, S. Minjeaud\",\"doi\":\"10.1051/PROC/202107001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we write, analyze and experimentally compare three different numerical schemes dedicated to the one dimensional barotropic Navier-Stokes equations: a staggered scheme based on the Rusanov one for the inviscid (Euler) system,a staggered pseudo-Lagrangian scheme in which the mesh “follows” the fluid,the Eulerian projection (on a fixed mesh) of the preceding scheme. All these schemes only involve the resolution of linear systems (all the nonlinear terms are solved in an explicit way). We propose numerical illustrations of their behaviors on particular solutions in which the density has discontinuities (hereafter called Hoff solutions). We show that the three schemes seem to converge to the same solutions, and we compare the evolution of the amplitude of the discontinuity of the numerical solution (with the pseudo-Lagrangian scheme) with the one predicted by Hoff and observe a good agreement.\",\"PeriodicalId\":53260,\"journal\":{\"name\":\"ESAIM Proceedings and Surveys\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ESAIM Proceedings and Surveys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/PROC/202107001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESAIM Proceedings and Surveys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/PROC/202107001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们编写、分析并实验比较了三种专门用于一维正压性Navier-Stokes方程的不同数值格式:一种基于鲁萨诺夫格式的无粘(欧拉)系统的交错格式,一种网格“遵循”流体的交错伪拉格朗日格式,前一种格式的欧拉投影(在固定网格上)。所有这些方案只涉及线性系统的解析(所有的非线性项都以显式的方式求解)。我们提出了它们在密度具有不连续的特殊解(以下称为霍夫解)上的行为的数值说明。我们证明了这三种格式似乎收敛于相同的解,并且我们比较了数值解(使用伪拉格朗日格式)的不连续振幅的演变与Hoff预测的不连续振幅的演变,并观察到很好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical investigations of the compressible Navier-Stokes system
In this paper we write, analyze and experimentally compare three different numerical schemes dedicated to the one dimensional barotropic Navier-Stokes equations: a staggered scheme based on the Rusanov one for the inviscid (Euler) system,a staggered pseudo-Lagrangian scheme in which the mesh “follows” the fluid,the Eulerian projection (on a fixed mesh) of the preceding scheme. All these schemes only involve the resolution of linear systems (all the nonlinear terms are solved in an explicit way). We propose numerical illustrations of their behaviors on particular solutions in which the density has discontinuities (hereafter called Hoff solutions). We show that the three schemes seem to converge to the same solutions, and we compare the evolution of the amplitude of the discontinuity of the numerical solution (with the pseudo-Lagrangian scheme) with the one predicted by Hoff and observe a good agreement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信