Carbon Resources Conversion最新文献

筛选
英文 中文
Studies of polyol production by the yeast Yarrowia lipolytica growing on crude glycerol under stressful conditions 在胁迫条件下,在粗甘油上生长的脂肪溶解酵母生产多元醇的研究
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-29 DOI: 10.1016/j.crcon.2023.100210
Eleni-Stavroula Vastaroucha , Nikolaos G. Stoforos , George Aggelis , Seraphim Papanikolaou
{"title":"Studies of polyol production by the yeast Yarrowia lipolytica growing on crude glycerol under stressful conditions","authors":"Eleni-Stavroula Vastaroucha ,&nbsp;Nikolaos G. Stoforos ,&nbsp;George Aggelis ,&nbsp;Seraphim Papanikolaou","doi":"10.1016/j.crcon.2023.100210","DOIUrl":"10.1016/j.crcon.2023.100210","url":null,"abstract":"<div><p>Crude glycerol, the principal by-product of biodiesel production process, was employed as substrate by three wild-type <em>Yarrowia lipolytica</em> strains (ACA-YC 5030, LMBF 20 and NRRL Y-323). Stressful conditions (low pH value = 2.0 ± 0.3, low incubation temperature <em>T =</em> 20 ± 1 °C, non-aseptic conditions) were employed. Interesting production of yeast biomass and polyols (viz. erythritol, mannitol and arabitol) was noted at pH = 2.0 ± 0.3 and <em>T =</em> 20 ± 1 °C. Strains failed to produce significant quantities of cellular lipid, while variable quantities of intra-cellular polysaccharides were produced. Fermentations under previously pasteurized media supported significant biomass and polyols production for most of the tested strains, while only one strain (NRRL Y-323), managed to produce polyols at media that were not previously thermally treated at all. The production of mannitol was favored at low initial glycerol (Glol<sub>0</sub>) concentrations, whereas higher Glol<sub>0</sub> quantities favored the biosynthesis of erythritol. For the strain NRRL Y-323, highly aerated / agitated bioreactor trials showed different physiological profiles as compared to the respective flask experiments. Finally, in flask experiments with the strain NRRL Y-323 at high Glol<sub>0</sub> amounts (≈140 g/L) at low medium pH (=2.0 ± 0.3), a significant production of polyols (=84.2 g/L) with the corresponding remarkable conversion yield on glycerol consumed = 62 % w/w was achieved.</p></div><div><h3>Practical application</h3><p>Renewable and biodegradable fuels, such as biodiesel, are safer and environmentally friendlier than the conventional petroleum diesel. Glycerol is a cost-effective substrate obtained as the main side-product from biodiesel production process and is currently being employed in the realm of Industrial Microbiology and Biotechnology to produce metabolic products with added value. Current research focuses on using glycerol as a starting substrate for biotechnological conversions aiming at producing, amongst other compounds, polyols, microbial biomass, citric acid, etc. from selected strains of the Generally Recognized Αs Safe (GRAS) yeast <em>Yarrowia lipolytica</em>. In the current investigation therefore, we examined the capacity of new wild-type non-extensively studied strains of this yeast to grow and assimilate this inexpensive substrate. Specifically, we have performed the acclimatization of the mentioned strains to stressful environments (i.e., low pH, low incubation temperature, non-aseptic conditions, etc.) and remarkable quantities of the added-value compounds (polyols, yeast mass, citric acid) were produced.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100210"},"PeriodicalIF":6.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000856/pdfft?md5=3cc8dd0912ac5d75f98aed58b9175abf&pid=1-s2.0-S2588913323000856-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the interaction between inherent minerals of coal with refuse derived fuel (RDF) during co-firing 煤炭固有矿物质与垃圾衍生燃料(RDF)在联合燃烧过程中的相互作用研究
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-29 DOI: 10.1016/j.crcon.2023.100208
Yanchi Jiang , Lanting Zhuo , Xiaojiang Wu , Zhongxiao Zhang , Xinwei Guo , Junjie Fan
{"title":"Study on the interaction between inherent minerals of coal with refuse derived fuel (RDF) during co-firing","authors":"Yanchi Jiang ,&nbsp;Lanting Zhuo ,&nbsp;Xiaojiang Wu ,&nbsp;Zhongxiao Zhang ,&nbsp;Xinwei Guo ,&nbsp;Junjie Fan","doi":"10.1016/j.crcon.2023.100208","DOIUrl":"10.1016/j.crcon.2023.100208","url":null,"abstract":"<div><p>In this paper, refuse derived fuel (RDF) and bituminous coal were co-fired to investigate the particulate matter (PM) yields and the interaction between the inherit minerals in a lab-scale drop tube furnace (DTF). The PM<sub>1-10</sub> yields during the co-firing of coal and RDF dramatically decreased by 16.29 %∼28.5 % of the combustion of coal alone. In addition, methane auxiliary combustion inhibited the PM<sub>1</sub> yields by 7.95 % at air atmosphere. The Si-rich minerals in coal interreacted with the organic alkali (earth) metals in RDF, massively generating sticky particles with high liquid amount of K-Al-Si and Ca-Al-Si, promoting the transformation of fine grains into coarser mode. Moreover, it was proved that both methane auxiliary combustion and co-firing can reduce the emission of fine particles. The additional heat accelerated the burn of the char at the early stage of combustion, providing adequate time for the interaction between the inorganic species. Through thermodynamic equilibrium calculations of 1500 ∼ 3000 fly ash grains, it was found that co-firing increased the formation of sticky particles by 64.8 %∼70.3 %, resulting in a significant enhancement in capturing fine particles and Na, K vapor. Therefore, the co-firing of coal with RDF offers a promising approach to realize the harmless and resourceful treatment of municipal solid waste (MSW), and inhibit land resource losses caused by landfill</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100208"},"PeriodicalIF":6.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000832/pdfft?md5=1f797038c200f246cd6ba5458f7514dc&pid=1-s2.0-S2588913323000832-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139193581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient hydrogen production from high-concentration aqueous formic acid over bio-based γ-Mo2N catalysts 在生物基 γ-Mo2N 催化剂上从高浓度甲酸水溶液中高效制氢
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-28 DOI: 10.1016/j.crcon.2023.100209
Zeyu Liu , Song Yang , Yanyan Yang , Wenyao Guo , Jianfei Wang , Bixi Wang , Xin Gao , Ting Wang , Shoujun Liu , Zhongliang Yu
{"title":"Efficient hydrogen production from high-concentration aqueous formic acid over bio-based γ-Mo2N catalysts","authors":"Zeyu Liu ,&nbsp;Song Yang ,&nbsp;Yanyan Yang ,&nbsp;Wenyao Guo ,&nbsp;Jianfei Wang ,&nbsp;Bixi Wang ,&nbsp;Xin Gao ,&nbsp;Ting Wang ,&nbsp;Shoujun Liu ,&nbsp;Zhongliang Yu","doi":"10.1016/j.crcon.2023.100209","DOIUrl":"10.1016/j.crcon.2023.100209","url":null,"abstract":"<div><p>Formic acid is regarded to be one of the most prospective hydrogen carriers. Effective screening of the fitting non-noble-metal-based heterogeneous catalysts to substitute the expensive noble-metal-based ones for FA dehydrogenation is considered as a key to the commercial application for hydrogen economics. Herein, dehydrogenation of liquid neat FA achieved a gas production value of 1753.5 mL/g<sub>cat</sub>./h at 94 °C by using a biomass-derived γ-Mo<sub>2</sub>N based catalyst synthesized from the earth-abundant molybdenum and soybean with a facile pyrolysis process. The effect of material ratio, pyrolysis temperature on the catalytic performance of FA dehydrogenation were studied in details. In particular, the catalyst obtained at a pyrolysis temperature of 700 °C, weight ratios of ammonium molybdate to soybean of 0.2/1 exhibited the highest activity. In addition, the catalytic activity increased with the increase of FA concentration, but conversely, the dehydrogenation selectivity decreased with the increasing FA concentration. Moreover, it was found that the Bio-Mo<sub>2</sub>N catalyst was rather stable over the 40 h continuous reaction period.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100209"},"PeriodicalIF":6.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000844/pdfft?md5=ddea11678326ce7fa99289b519bf7aad&pid=1-s2.0-S2588913323000844-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139195963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research progress of MOF-based materials in the photocatalytic CO2 reduction 基于 MOF 的光催化二氧化碳还原材料的研究进展
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-28 DOI: 10.1016/j.crcon.2023.100211
Qian Su , Qingjie Guo , Haiquan Wang , Meifang Liu , Cheng Zuo
{"title":"Research progress of MOF-based materials in the photocatalytic CO2 reduction","authors":"Qian Su ,&nbsp;Qingjie Guo ,&nbsp;Haiquan Wang ,&nbsp;Meifang Liu ,&nbsp;Cheng Zuo","doi":"10.1016/j.crcon.2023.100211","DOIUrl":"https://doi.org/10.1016/j.crcon.2023.100211","url":null,"abstract":"<div><p>Photocatalytic technology could utilize solar energy to reduce CO<sub>2</sub> into high-value-added fossil fuels, providing promising solutions for global energy and environmental issues. Metal-organic frameworks (MOFs) are a class of crystalline porous solids with high porosity and flexible structure. MOF-based photocatalysts have excellent CO<sub>2</sub> capture ability, photochemical and structural characteristics and have shown infinite development potential in CO<sub>2</sub> reduction. However, in practical large-scale applications, MOF-based photocatalysts still have some urgent problems to be solved, such as high composite rate of photogenerated carriers, limited response range to visible spectrum, poor photocatalytic activity and weak reduction ability. This paper introduces series of MOF-based photocatalysts, including pure MOF materials, compounds, and derivatives, were reviewed based on recent reports. Emphasis was placed on the modification strategy of photocatalysts, the photocatalytic reaction's key physical and chemical parameters, and the mechanism of synergistic improvement of chemical fuel yield. Ultimately and most importantly, the future development trends and prospects of MOF-based catalysts for photocatalytic CO<sub>2</sub> reduction were discussed.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 1","pages":"Article 100211"},"PeriodicalIF":6.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000868/pdfft?md5=014f95bffb314680e52d358060aa85e4&pid=1-s2.0-S2588913323000868-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled fabrication of Fe3N@NG composites as superior oxygen evolution reaction electrocatalysts 受控制备 Fe3N@NG 复合材料,作为优异的氧进化反应电催化剂
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-21 DOI: 10.1016/j.crcon.2023.100207
Yang Song , Tongya Tian , Changming Li , Xi Zeng , Sen Zhang , Li Chen , Zhenghua Yang , Qizhe Ji , Xianglong Zhao , Feiyong Chen
{"title":"Controlled fabrication of Fe3N@NG composites as superior oxygen evolution reaction electrocatalysts","authors":"Yang Song ,&nbsp;Tongya Tian ,&nbsp;Changming Li ,&nbsp;Xi Zeng ,&nbsp;Sen Zhang ,&nbsp;Li Chen ,&nbsp;Zhenghua Yang ,&nbsp;Qizhe Ji ,&nbsp;Xianglong Zhao ,&nbsp;Feiyong Chen","doi":"10.1016/j.crcon.2023.100207","DOIUrl":"10.1016/j.crcon.2023.100207","url":null,"abstract":"<div><p>We report the controlled fabrication of nitrogen doped graphene (NG) nanoplates, which are uniformly decorated with iron nitride (Fe<sub>3</sub>N) nanoparticles, <em>via</em> ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing. The obtained Fe<sub>3</sub>N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction, both of which outperform those of the state-of-the-art iridium oxide catalysts. This may be attributed to nitrogen doping as well as the synergistic effect between Fe<sub>3</sub>N and graphene nanoplates.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100207"},"PeriodicalIF":6.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000820/pdfft?md5=a7fd197eaf6cb04c425e7a8f82e6743d&pid=1-s2.0-S2588913323000820-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139018831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants 从木薯浆中绿色水热合成多功能碳点,用于植物中的金属传感、抗氧化和汞解毒
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-12-12 DOI: 10.1016/j.crcon.2023.100206
Teera Watcharamongkol , Pacharaphon Khaopueak , Chuleekorn Seesuea , Kanokorn Wechakorn
{"title":"Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants","authors":"Teera Watcharamongkol ,&nbsp;Pacharaphon Khaopueak ,&nbsp;Chuleekorn Seesuea ,&nbsp;Kanokorn Wechakorn","doi":"10.1016/j.crcon.2023.100206","DOIUrl":"10.1016/j.crcon.2023.100206","url":null,"abstract":"<div><p>Carbon dots (CDs) have been attracted to nanocarbon materials for metal ion sensing, biological activity, and plant phytotoxicity due to their excellent photophysical properties, such as low cytotoxicity, high quantum yield, tunable fluorescence emission, and biocompatibility. Cassava pulp, which consists mainly of starch, has been identified as a low-cost biomass waste from the cassava starch industry. Therefore, this research developed CDs and nitrogen-doped CDs (NCDs) from cassava pulp using a one-step hydrothermal process in deionized water at 200 °C. The effects of the synthesis conditions, including reaction time (6–24 h) and the nitrogen doping derivatives, were also investigated. CDs and ethylenediamine doped-NCDs exhibited tunable fluorescence emission, strong quantum yield, high photostability, and tolerance to photobleaching. Furthermore, the potential applications of CDs-12 h were demonstrated such as fluorescent sensors for metal ion sensing, antioxidant activity, and mercury detoxification in plants. Fluorescence quenching of the CDs-12 h <em>via</em> both static and dynamic quenching mechanisms was observed in the presence of several metal ions such as Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> with the detection limit in micromolar levels and further applied to real water samples with good recovery and acceptable relative standard derivation. The paper test strip coated with CDs-12 h could also detect these metal ions under UV light. CDs and NCDs-EDA also showed potential DPPH radical scavenging activity and alleviated mercury toxicity in the Chinese cabbage seedlings with the incubation of CDs-12 h and NCDs-EDA-12 h (30 mg/L).</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100206"},"PeriodicalIF":6.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000819/pdfft?md5=c253d70a82f95e1a93f0d750b64c2882&pid=1-s2.0-S2588913323000819-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138991215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Facile preparation of coal-based ultramicroporous carbon microspheres for selective CO2 capture 用于选择性捕获二氧化碳的煤基超微孔碳微球的简便制备方法
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-11-21 DOI: 10.1016/j.crcon.2023.11.001
Mei An , Tuo Guo , Qingjie Guo
{"title":"Facile preparation of coal-based ultramicroporous carbon microspheres for selective CO2 capture","authors":"Mei An ,&nbsp;Tuo Guo ,&nbsp;Qingjie Guo","doi":"10.1016/j.crcon.2023.11.001","DOIUrl":"10.1016/j.crcon.2023.11.001","url":null,"abstract":"<div><p>The basic structure of aromatic compounds that are abundant in coal is the carbonaceous precursor derived from carbon microspheres. However, it remains to be a huge challenge to prepare carbon microspheres using coal due to the complex construction and composition of coal. Herein, a simple and viable way to obtain coal-based microporous carbon microspheres was developed by means of ethanol pyrolysis and a sequential extraction strategy. The as-prepared carbon microsphere featured aspherical micron particles of a uniform size (0.6–1.6㎛), abundant O-functional groups, excellent thermal stability, high SBET(415.5–983.2 m<sup>2</sup>/g), and plentiful ultramicropores(63.15–72.72 %). The coal-based carbon microsphere exhibited a noteworthy CO<sub>2</sub> uptake (3.19–4.97 mmol/g at 273 K and 1.0 bar), acceptable CO<sub>2</sub>/N<sub>2</sub> selectivity (IAST: 23–46) and moderate isosteric heats (20–32 kJ/mol). This synthetic strategy is important for the preparation of ultramicroporous carbon microspheres using coal, and the synthetic carbon microspheres have promising prospects for highly efficient CO<sub>2</sub> capture.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100205"},"PeriodicalIF":6.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000807/pdfft?md5=10d998ce2e6fc2d171969a20ab8c626c&pid=1-s2.0-S2588913323000807-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139302904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions 模拟 MILD 全氧燃烧条件的高温低氧环境下煤粉燃烧氮氧化物形成的实验研究
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-11-10 DOI: 10.1016/j.crcon.2023.10.004
Lanbo Li, Yuegui Zhou, Chaoqiang Yang, Anwen Peng, Guanshuo Huang
{"title":"Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions","authors":"Lanbo Li,&nbsp;Yuegui Zhou,&nbsp;Chaoqiang Yang,&nbsp;Anwen Peng,&nbsp;Guanshuo Huang","doi":"10.1016/j.crcon.2023.10.004","DOIUrl":"10.1016/j.crcon.2023.10.004","url":null,"abstract":"<div><p>The NO formation experiments simulating moderate and intense low-oxygen dilution (MILD) oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473–1873 K and the oxygen volume fractions of 5 %–20 % in O<sub>2</sub>/CO<sub>2</sub>, O<sub>2</sub>/Ar and O<sub>2</sub>/N<sub>2</sub> atmospheres. The flame images of pulverized coal combustion were captured to obtain the ignition delay distances, and the axial species concentrations were measured to obtain the variation of NO formation and reduction. The NO yield in O<sub>2</sub>/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20 % to 5 % and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K. The NO yield in O<sub>2</sub>/CO<sub>2</sub> atmosphere was 0.1–0.15 lower than that in O<sub>2</sub>/Ar atmosphere. The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of <em>n</em>th-order <em>Arrhenius</em> expression. Finally, the relative contribution rates of thermal NO to total NO (<em>R<sub>th</sub></em>) and NO reduction to fuel NO (<em>R<sub>re</sub></em>) were quantitatively separated. <em>R<sub>th</sub></em> decreases with the increase of oxygen volume fraction, below 6 % at 1800 K, 25 % at 2000 K. <em>R<sub>re</sub></em> is almost unaffected by the coflow temperature and affected by the oxygen volume fraction, reaching 30 % at 5 % O<sub>2</sub>.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100204"},"PeriodicalIF":6.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000790/pdfft?md5=7aaa7c283013508265d2c37c2021395a&pid=1-s2.0-S2588913323000790-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems – A review 微藻在加强生化转化系统的循环经济驱动力方面的贡献--综述
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-10-28 DOI: 10.1016/j.crcon.2023.10.003
Kelechi E. Anyaoha , Felix Krujatz , Isla Hodgkinson , Roman Maletz , Christina Dornack
{"title":"Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems – A review","authors":"Kelechi E. Anyaoha ,&nbsp;Felix Krujatz ,&nbsp;Isla Hodgkinson ,&nbsp;Roman Maletz ,&nbsp;Christina Dornack","doi":"10.1016/j.crcon.2023.10.003","DOIUrl":"10.1016/j.crcon.2023.10.003","url":null,"abstract":"<div><p>The global impact of greenhouse gas emissions requires concerted efforts to reduce emissions and energy use, and to increase carbon capture and sequestration. Promoting the circular economy in CO<sub>2</sub> sequestration systems optimises resource use and reduces the emissions burden throughout the supply chain. Carbon capture from anaerobic digestion, composting and fermentation (particularly ethanol) processes offers great opportunities for climate change mitigation. The waste/by-products generated from these processes can limit the need to source nutrients from outside the system and increase the potential for circular economy. The integration of microalgae cultivation with each of anaerobic digestion, composting and ethanol fermentation processes provides a new model for climate change mitigation of biogenic CO<sub>2</sub> and circular economy. While this model is limited by high energy consumption and nutrient demand, seasonal variability, operational efficiency and end-user requirements, further research and policy support will go a long way in realising the associated benefits, including in CO<sub>2</sub> fixation, nutrient recovery, waste remediation and as an alternative source of animal feed.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100203"},"PeriodicalIF":6.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000789/pdfft?md5=20d0000e7e6c1146e7dfaa7c6109d228&pid=1-s2.0-S2588913323000789-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover 外封底
IF 6 3区 环境科学与生态学
Carbon Resources Conversion Pub Date : 2023-10-27 DOI: 10.1016/S2588-9133(23)00067-4
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2588-9133(23)00067-4","DOIUrl":"https://doi.org/10.1016/S2588-9133(23)00067-4","url":null,"abstract":"","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"6 4","pages":"Page OBC"},"PeriodicalIF":6.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000674/pdfft?md5=99b19856633063bb009f07d33b4f0080&pid=1-s2.0-S2588913323000674-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136799719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信