Qian Su , Qingjie Guo , Haiquan Wang , Meifang Liu , Cheng Zuo
{"title":"Research progress of MOF-based materials in the photocatalytic CO2 reduction","authors":"Qian Su , Qingjie Guo , Haiquan Wang , Meifang Liu , Cheng Zuo","doi":"10.1016/j.crcon.2023.100211","DOIUrl":"https://doi.org/10.1016/j.crcon.2023.100211","url":null,"abstract":"<div><p>Photocatalytic technology could utilize solar energy to reduce CO<sub>2</sub> into high-value-added fossil fuels, providing promising solutions for global energy and environmental issues. Metal-organic frameworks (MOFs) are a class of crystalline porous solids with high porosity and flexible structure. MOF-based photocatalysts have excellent CO<sub>2</sub> capture ability, photochemical and structural characteristics and have shown infinite development potential in CO<sub>2</sub> reduction. However, in practical large-scale applications, MOF-based photocatalysts still have some urgent problems to be solved, such as high composite rate of photogenerated carriers, limited response range to visible spectrum, poor photocatalytic activity and weak reduction ability. This paper introduces series of MOF-based photocatalysts, including pure MOF materials, compounds, and derivatives, were reviewed based on recent reports. Emphasis was placed on the modification strategy of photocatalysts, the photocatalytic reaction's key physical and chemical parameters, and the mechanism of synergistic improvement of chemical fuel yield. Ultimately and most importantly, the future development trends and prospects of MOF-based catalysts for photocatalytic CO<sub>2</sub> reduction were discussed.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 1","pages":"Article 100211"},"PeriodicalIF":6.0,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000868/pdfft?md5=014f95bffb314680e52d358060aa85e4&pid=1-s2.0-S2588913323000868-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Song , Tongya Tian , Changming Li , Xi Zeng , Sen Zhang , Li Chen , Zhenghua Yang , Qizhe Ji , Xianglong Zhao , Feiyong Chen
{"title":"Controlled fabrication of Fe3N@NG composites as superior oxygen evolution reaction electrocatalysts","authors":"Yang Song , Tongya Tian , Changming Li , Xi Zeng , Sen Zhang , Li Chen , Zhenghua Yang , Qizhe Ji , Xianglong Zhao , Feiyong Chen","doi":"10.1016/j.crcon.2023.100207","DOIUrl":"10.1016/j.crcon.2023.100207","url":null,"abstract":"<div><p>We report the controlled fabrication of nitrogen doped graphene (NG) nanoplates, which are uniformly decorated with iron nitride (Fe<sub>3</sub>N) nanoparticles, <em>via</em> ball milling of mixtures of graphite and iron nitrates and the following ammonia annealing. The obtained Fe<sub>3</sub>N@NG composites demonstrate excellent electrocatalytic activity and durability for oxygen evolution reaction, both of which outperform those of the state-of-the-art iridium oxide catalysts. This may be attributed to nitrogen doping as well as the synergistic effect between Fe<sub>3</sub>N and graphene nanoplates.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100207"},"PeriodicalIF":6.0,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000820/pdfft?md5=a7fd197eaf6cb04c425e7a8f82e6743d&pid=1-s2.0-S2588913323000820-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139018831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants","authors":"Teera Watcharamongkol , Pacharaphon Khaopueak , Chuleekorn Seesuea , Kanokorn Wechakorn","doi":"10.1016/j.crcon.2023.100206","DOIUrl":"10.1016/j.crcon.2023.100206","url":null,"abstract":"<div><p>Carbon dots (CDs) have been attracted to nanocarbon materials for metal ion sensing, biological activity, and plant phytotoxicity due to their excellent photophysical properties, such as low cytotoxicity, high quantum yield, tunable fluorescence emission, and biocompatibility. Cassava pulp, which consists mainly of starch, has been identified as a low-cost biomass waste from the cassava starch industry. Therefore, this research developed CDs and nitrogen-doped CDs (NCDs) from cassava pulp using a one-step hydrothermal process in deionized water at 200 °C. The effects of the synthesis conditions, including reaction time (6–24 h) and the nitrogen doping derivatives, were also investigated. CDs and ethylenediamine doped-NCDs exhibited tunable fluorescence emission, strong quantum yield, high photostability, and tolerance to photobleaching. Furthermore, the potential applications of CDs-12 h were demonstrated such as fluorescent sensors for metal ion sensing, antioxidant activity, and mercury detoxification in plants. Fluorescence quenching of the CDs-12 h <em>via</em> both static and dynamic quenching mechanisms was observed in the presence of several metal ions such as Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> with the detection limit in micromolar levels and further applied to real water samples with good recovery and acceptable relative standard derivation. The paper test strip coated with CDs-12 h could also detect these metal ions under UV light. CDs and NCDs-EDA also showed potential DPPH radical scavenging activity and alleviated mercury toxicity in the Chinese cabbage seedlings with the incubation of CDs-12 h and NCDs-EDA-12 h (30 mg/L).</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100206"},"PeriodicalIF":6.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000819/pdfft?md5=c253d70a82f95e1a93f0d750b64c2882&pid=1-s2.0-S2588913323000819-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138991215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Facile preparation of coal-based ultramicroporous carbon microspheres for selective CO2 capture","authors":"Mei An , Tuo Guo , Qingjie Guo","doi":"10.1016/j.crcon.2023.11.001","DOIUrl":"10.1016/j.crcon.2023.11.001","url":null,"abstract":"<div><p>The basic structure of aromatic compounds that are abundant in coal is the carbonaceous precursor derived from carbon microspheres. However, it remains to be a huge challenge to prepare carbon microspheres using coal due to the complex construction and composition of coal. Herein, a simple and viable way to obtain coal-based microporous carbon microspheres was developed by means of ethanol pyrolysis and a sequential extraction strategy. The as-prepared carbon microsphere featured aspherical micron particles of a uniform size (0.6–1.6㎛), abundant O-functional groups, excellent thermal stability, high SBET(415.5–983.2 m<sup>2</sup>/g), and plentiful ultramicropores(63.15–72.72 %). The coal-based carbon microsphere exhibited a noteworthy CO<sub>2</sub> uptake (3.19–4.97 mmol/g at 273 K and 1.0 bar), acceptable CO<sub>2</sub>/N<sub>2</sub> selectivity (IAST: 23–46) and moderate isosteric heats (20–32 kJ/mol). This synthetic strategy is important for the preparation of ultramicroporous carbon microspheres using coal, and the synthetic carbon microspheres have promising prospects for highly efficient CO<sub>2</sub> capture.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100205"},"PeriodicalIF":6.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000807/pdfft?md5=10d998ce2e6fc2d171969a20ab8c626c&pid=1-s2.0-S2588913323000807-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139302904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions","authors":"Lanbo Li, Yuegui Zhou, Chaoqiang Yang, Anwen Peng, Guanshuo Huang","doi":"10.1016/j.crcon.2023.10.004","DOIUrl":"10.1016/j.crcon.2023.10.004","url":null,"abstract":"<div><p>The NO formation experiments simulating moderate and intense low-oxygen dilution (MILD) oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473–1873 K and the oxygen volume fractions of 5 %–20 % in O<sub>2</sub>/CO<sub>2</sub>, O<sub>2</sub>/Ar and O<sub>2</sub>/N<sub>2</sub> atmospheres. The flame images of pulverized coal combustion were captured to obtain the ignition delay distances, and the axial species concentrations were measured to obtain the variation of NO formation and reduction. The NO yield in O<sub>2</sub>/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20 % to 5 % and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K. The NO yield in O<sub>2</sub>/CO<sub>2</sub> atmosphere was 0.1–0.15 lower than that in O<sub>2</sub>/Ar atmosphere. The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of <em>n</em>th-order <em>Arrhenius</em> expression. Finally, the relative contribution rates of thermal NO to total NO (<em>R<sub>th</sub></em>) and NO reduction to fuel NO (<em>R<sub>re</sub></em>) were quantitatively separated. <em>R<sub>th</sub></em> decreases with the increase of oxygen volume fraction, below 6 % at 1800 K, 25 % at 2000 K. <em>R<sub>re</sub></em> is almost unaffected by the coflow temperature and affected by the oxygen volume fraction, reaching 30 % at 5 % O<sub>2</sub>.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 3","pages":"Article 100204"},"PeriodicalIF":6.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000790/pdfft?md5=7aaa7c283013508265d2c37c2021395a&pid=1-s2.0-S2588913323000790-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135614483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kelechi E. Anyaoha , Felix Krujatz , Isla Hodgkinson , Roman Maletz , Christina Dornack
{"title":"Microalgae contribution in enhancing the circular economy drive of biochemical conversion systems – A review","authors":"Kelechi E. Anyaoha , Felix Krujatz , Isla Hodgkinson , Roman Maletz , Christina Dornack","doi":"10.1016/j.crcon.2023.10.003","DOIUrl":"10.1016/j.crcon.2023.10.003","url":null,"abstract":"<div><p>The global impact of greenhouse gas emissions requires concerted efforts to reduce emissions and energy use, and to increase carbon capture and sequestration. Promoting the circular economy in CO<sub>2</sub> sequestration systems optimises resource use and reduces the emissions burden throughout the supply chain. Carbon capture from anaerobic digestion, composting and fermentation (particularly ethanol) processes offers great opportunities for climate change mitigation. The waste/by-products generated from these processes can limit the need to source nutrients from outside the system and increase the potential for circular economy. The integration of microalgae cultivation with each of anaerobic digestion, composting and ethanol fermentation processes provides a new model for climate change mitigation of biogenic CO<sub>2</sub> and circular economy. While this model is limited by high energy consumption and nutrient demand, seasonal variability, operational efficiency and end-user requirements, further research and policy support will go a long way in realising the associated benefits, including in CO<sub>2</sub> fixation, nutrient recovery, waste remediation and as an alternative source of animal feed.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100203"},"PeriodicalIF":6.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000789/pdfft?md5=20d0000e7e6c1146e7dfaa7c6109d228&pid=1-s2.0-S2588913323000789-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136127604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A life cycle analysis on magnesium production processes: Energy consumption, carbon emission and economics","authors":"Xiaorui Huang, Zifu Xu, Liangliang Fu, Zhennan Han, Kun Zhao, Kangjun Wang, Dingrong Bai, Guangwen Xu","doi":"10.1016/j.crcon.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.crcon.2023.10.002","url":null,"abstract":"Magnesium is widely used in manufacturing industry because of its excellent physical and chemical properties and has its increasing demand due to environmental requirements. China, as the world s biggest producer and exporter of metallic magnesium, produces metallic magnesium in its western provinces through the silico-thermic process known as the Pidgeon process. However, there are few metallic magnesium plants in eastern China, especially in Liaoning province where magnesite is rich in reserves. The short supply of magnesium has limited the growth of the magnesium casting industry and the local magnesite industry. Under the carbon market established to face the challenges of climate change, how to choose an economical and feasible route for magnesium production, is a key factor to determine the development of magnesium industry in Liaoning. In this paper, life cycle analysis models are developed to study the energy consumption, greenhouse gas (GHG) emissions, and economics from cradle to gate for six different metal magnesium production processes using data accounting for different geographical environments, process equipment, and energy supply pathways based on the Chinese Life Cycle Database (CLCD). The influence of carbon trading prices on economic performance of the six processes is also investigated. Compared with the current process widely used in China, the new magnesium production technology using Liaoning s abandoned magnesite as raw material and the coke oven gas from steelworks as fuel showed the best economic performance in terms of cost for greenhouse gas emissions.","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"159 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135760562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ze-Zheng Li , Wei-Jia Jiang , Yu-Gao Wang , Zhi-Lei Wang , Jun Shen , Xian-Yong Wei
{"title":"A novel method for producing benzene polycarboxylic acids by electrochemical oxidation of Zhaotong lignite in aqueous NaCl solution","authors":"Ze-Zheng Li , Wei-Jia Jiang , Yu-Gao Wang , Zhi-Lei Wang , Jun Shen , Xian-Yong Wei","doi":"10.1016/j.crcon.2023.09.004","DOIUrl":"10.1016/j.crcon.2023.09.004","url":null,"abstract":"<div><p>The development of a coal-based synthetic route to produce benzene polycarboxylic acids (BPCAs) is of great importance for the highly efficient utilization of lignites. In this paper, aqueous NaCl electrolytic system was used to oxidize Zhaotong lignite to prepare BPCAs. The electrochemical oxidation of lignite in aqueous NaCl solution could produce more BPCAs than that in aqueous NaOH solution. The aqueous NaCl electrolytic system could <em>in-suit</em> produce a stable OCl<sup>−</sup>, which was synthesized by the combination reaction between Cl<sub>2</sub> and OH<sup>−</sup> generated in the anode or cathode, respectively. The <em>in-suit</em> produced OCl<sup>−</sup> would degrade the organic structures of the lignite dispersing in the electrolyte to generate BPCAs. The formation of BPCAs could be greatly affected by current density, electrolysis time and the addition amount of NaCl in the electrolytic system, which resulted from that the factors played an important role in the generation of OCl<sup>−</sup>. The coal related model compounds including anthracene and phenanthrene were used to investigate the electrochemical oxidation mechanism of the lignite. The results indicated that the aromatic ring structures in the lignite were attacked by O<sub>2</sub><sup><img>−</sup> from the OCl<sup>−</sup> to afford BPCAs.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100200"},"PeriodicalIF":6.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000716/pdfft?md5=f21d8773ec41b1bfce72712fc34c443b&pid=1-s2.0-S2588913323000716-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shadeera Rouf , Yaser E. Greish , Bart Van der Bruggen , Sulaiman Al-Zuhair
{"title":"Surface modification of HKUST-1 for enhanced activity of immobilized formate dehydrogenase used in CO2 hydrogenation","authors":"Shadeera Rouf , Yaser E. Greish , Bart Van der Bruggen , Sulaiman Al-Zuhair","doi":"10.1016/j.crcon.2023.09.003","DOIUrl":"10.1016/j.crcon.2023.09.003","url":null,"abstract":"<div><p>Post synthetic modification of a hydrophilic metal–organic framework (MOF), HKUST-1, with stearic acid (SA) was carried out to enhance the stability of HKUST-1 in aqueous solution to be used as a support for formate dehydrogenase (FDH) used for CO<sub>2</sub> conversion to formate. SA modification improved the hydrophobicity without affecting the morphology and crystal structure of MOF. Adsorption of FDH on the modified MOF (SA@HKUST-1) was compared to that of the native HKUST-1 and ZIF-L. The adsorption kinetics on all MOFs was found to follow pseudo-second order kinetics and the isotherm was best described by Freundlich model. The high stability of SA@HKUST-1 and enhanced hydrophobic interaction between support and CO<sub>2</sub> resulted in high catalytic efficiency and stability of FDH@SA@HKUST-1. The immobilized enzyme retained 95.1% of its initial activity after 4 cycles of repeated use. It was also shown that FDH@SA@HKUST-1 retained morphology and crystal structure after repeated use. Results of the present work provide novel insight into the influence of hydrophobic MOFs on the activity and stability of immobilized FDH. These findings are expected to assist in developing highly active and stable biocatalysts for CO<sub>2</sub> hydrogenation at commercial level.</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 1","pages":"Article 100199"},"PeriodicalIF":6.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000704/pdfft?md5=bea436ffa4d2d11afdb4af0191399007&pid=1-s2.0-S2588913323000704-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135387649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}