{"title":"Green hydrothermal synthesis of multifunctional carbon dots from cassava pulps for metal sensing, antioxidant, and mercury detoxification in plants","authors":"Teera Watcharamongkol , Pacharaphon Khaopueak , Chuleekorn Seesuea , Kanokorn Wechakorn","doi":"10.1016/j.crcon.2023.100206","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon dots (CDs) have been attracted to nanocarbon materials for metal ion sensing, biological activity, and plant phytotoxicity due to their excellent photophysical properties, such as low cytotoxicity, high quantum yield, tunable fluorescence emission, and biocompatibility. Cassava pulp, which consists mainly of starch, has been identified as a low-cost biomass waste from the cassava starch industry. Therefore, this research developed CDs and nitrogen-doped CDs (NCDs) from cassava pulp using a one-step hydrothermal process in deionized water at 200 °C. The effects of the synthesis conditions, including reaction time (6–24 h) and the nitrogen doping derivatives, were also investigated. CDs and ethylenediamine doped-NCDs exhibited tunable fluorescence emission, strong quantum yield, high photostability, and tolerance to photobleaching. Furthermore, the potential applications of CDs-12 h were demonstrated such as fluorescent sensors for metal ion sensing, antioxidant activity, and mercury detoxification in plants. Fluorescence quenching of the CDs-12 h <em>via</em> both static and dynamic quenching mechanisms was observed in the presence of several metal ions such as Hg<sup>2+</sup>, Cu<sup>2+</sup>, and Fe<sup>3+</sup> with the detection limit in micromolar levels and further applied to real water samples with good recovery and acceptable relative standard derivation. The paper test strip coated with CDs-12 h could also detect these metal ions under UV light. CDs and NCDs-EDA also showed potential DPPH radical scavenging activity and alleviated mercury toxicity in the Chinese cabbage seedlings with the incubation of CDs-12 h and NCDs-EDA-12 h (30 mg/L).</p></div>","PeriodicalId":52958,"journal":{"name":"Carbon Resources Conversion","volume":"7 2","pages":"Article 100206"},"PeriodicalIF":6.4000,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588913323000819/pdfft?md5=c253d70a82f95e1a93f0d750b64c2882&pid=1-s2.0-S2588913323000819-main.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Resources Conversion","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588913323000819","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
Carbon dots (CDs) have been attracted to nanocarbon materials for metal ion sensing, biological activity, and plant phytotoxicity due to their excellent photophysical properties, such as low cytotoxicity, high quantum yield, tunable fluorescence emission, and biocompatibility. Cassava pulp, which consists mainly of starch, has been identified as a low-cost biomass waste from the cassava starch industry. Therefore, this research developed CDs and nitrogen-doped CDs (NCDs) from cassava pulp using a one-step hydrothermal process in deionized water at 200 °C. The effects of the synthesis conditions, including reaction time (6–24 h) and the nitrogen doping derivatives, were also investigated. CDs and ethylenediamine doped-NCDs exhibited tunable fluorescence emission, strong quantum yield, high photostability, and tolerance to photobleaching. Furthermore, the potential applications of CDs-12 h were demonstrated such as fluorescent sensors for metal ion sensing, antioxidant activity, and mercury detoxification in plants. Fluorescence quenching of the CDs-12 h via both static and dynamic quenching mechanisms was observed in the presence of several metal ions such as Hg2+, Cu2+, and Fe3+ with the detection limit in micromolar levels and further applied to real water samples with good recovery and acceptable relative standard derivation. The paper test strip coated with CDs-12 h could also detect these metal ions under UV light. CDs and NCDs-EDA also showed potential DPPH radical scavenging activity and alleviated mercury toxicity in the Chinese cabbage seedlings with the incubation of CDs-12 h and NCDs-EDA-12 h (30 mg/L).
期刊介绍:
Carbon Resources Conversion (CRC) publishes fundamental studies and industrial developments regarding relevant technologies aiming for the clean, efficient, value-added, and low-carbon utilization of carbon-containing resources as fuel for energy and as feedstock for materials or chemicals from, for example, fossil fuels, biomass, syngas, CO2, hydrocarbons, and organic wastes via physical, thermal, chemical, biological, and other technical methods. CRC also publishes scientific and engineering studies on resource characterization and pretreatment, carbon material innovation and production, clean technologies related to carbon resource conversion and utilization, and various process-supporting technologies, including on-line or off-line measurement and monitoring, modeling, simulations focused on safe and efficient process operation and control, and process and equipment optimization.