Water Research X最新文献

筛选
英文 中文
Integrating machine learning algorithm with sewer process model to realize swift prediction and real-time control of H2S pollution in sewer systems 将机器学习算法与下水道工艺模型相结合,实现下水道系统 H2S 污染的快速预测和实时控制
IF 7.2 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100230
Zhensheng Liang , Wenlang Xie , Hao Li , Yu Li , Feng Jiang
{"title":"Integrating machine learning algorithm with sewer process model to realize swift prediction and real-time control of H2S pollution in sewer systems","authors":"Zhensheng Liang ,&nbsp;Wenlang Xie ,&nbsp;Hao Li ,&nbsp;Yu Li ,&nbsp;Feng Jiang","doi":"10.1016/j.wroa.2024.100230","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100230","url":null,"abstract":"<div><p>The frequent occurrence of safety incidents in sewer systems due to the emergency toxicity of hydrogen sulfide (H<sub>2</sub>S) necessitate timely and efficient prediction, early warning and real-time control. However, various factors influencing H<sub>2</sub>S generation and emission leads to a substantial computational burden for the existing dynamic sewer process models and fails to timely control the H<sub>2</sub>S exposure risk. The present study proposed a swift prediction model (SPM) that combined the validated dynamic sewer process model (the biofilm-initiated sewer process model, BISM) with a high-speed machine learning algorithm (MLA), achieving accurately and swiftly predict the dissolved sulfide (DS) concentration and H<sub>2</sub>S concentration in a specific sewer network. Based on Gradient Boosting Decision Tree-based SPM, the simulated concentrations of DS and H<sub>2</sub>S are 1.95 mg S/L and 214 ppm, respectively, which are closely to the field-measured values of 1.82 mg S/L and 219 ppm. Notably, SPM achieved a computation time of less than 0.3 s, and a significant improvement over BISM (&gt; 5000 s) for the same task. Moreover, the real-time and dynamic dosing scheme facilitated by SPM outperformed the conventional constant dosing scheme provided by dynamic sewer process model, which significantly improved the H<sub>2</sub>S control completion rate from 69 % to 100 %, and achieved a significant reduction in chemical dosage. In conclusion, the integration of dynamic sewer process models with MLA addresses the inadequacy of monitoring data for MLA training, and thus pursues swift prediction of H<sub>2</sub>S generation and emission, and achieving real-time, effective, and economic control of H<sub>2</sub>S in complex sewer networks.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000203/pdfft?md5=0edea718d98cc6fde946a30b883daf5b&pid=1-s2.0-S2589914724000203-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141485222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultraviolet technology application in urban water supply and wastewater treatment in China: Issues, challenges and future directions 紫外线技术在中国城市供水和污水处理中的应用:问题、挑战和未来方向
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100225
Wenjun Sun , Xiuwei Ao , Dongming Lu , Yuanna Zhang , Yanei Xue , Siyuan He , Xi Zhang , Ted Mao
{"title":"Ultraviolet technology application in urban water supply and wastewater treatment in China: Issues, challenges and future directions","authors":"Wenjun Sun ,&nbsp;Xiuwei Ao ,&nbsp;Dongming Lu ,&nbsp;Yuanna Zhang ,&nbsp;Yanei Xue ,&nbsp;Siyuan He ,&nbsp;Xi Zhang ,&nbsp;Ted Mao","doi":"10.1016/j.wroa.2024.100225","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100225","url":null,"abstract":"<div><p>This study thoroughly explores the application of Ultraviolet (UV) water treatment technology in urban wastewater treatment and water supply in China, highlighting its crucial role in enhancing water quality safety. UV technology, with its environmentally friendly and low-carbon characteristics, is deemed more in line with the demands of sustainable development compared to traditional chemical disinfection methods. The widespread application of UV technology in urban wastewater treatment in China, particularly in the context of urban sewage treatment, is examined. However, to better promote and apply UV technology, there is a need to deepen the understanding of this technology and its application among a broad base of users and design units. The importance of gaining in-depth knowledge about the performance of UV water treatment equipment, the design calculation basis, and operational considerations, as well as the ongoing development of relevant standards, is underscored to ensure that the equipment used in projects complies with engineering design and production requirements. Furthermore, the positive trend of UV technology in the field of advanced oxidation, indicating a promising trajectory for engineering applications, is pointed out. Regarding the prospects of industrial development, a thorough analysis is conducted in the article, emphasizing the necessity for all stakeholders to collaborate and adopt a multi-level approach to promote the sustainable development and application of UV water treatment technology. This collaborative effort is crucial for providing effective safeguards for China's environment, ecology, and human health.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S258991472400015X/pdfft?md5=7e5b3a95e8a05c9973a49094dcf8d922&pid=1-s2.0-S258991472400015X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140815119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The ciliate Euplotes balteatus is resistant to Paralytic Shellfish Toxins from Alexandrium minutum (Dinophyceae) 纤毛虫 Euplotes balteatus 对来自小亚历山大虫(鼎叶目)的麻痹性贝类毒素具有抗性
IF 7.2 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100229
Jing Li , Jinrong Wang , Xiuping He , Haifeng Gu , Xin Xu , Chen Liang , Yongchao Wang , Xiao Xu , Linxuan Jia , Junhui Chen , Miaohua Jiang , Jianming Chen
{"title":"The ciliate Euplotes balteatus is resistant to Paralytic Shellfish Toxins from Alexandrium minutum (Dinophyceae)","authors":"Jing Li ,&nbsp;Jinrong Wang ,&nbsp;Xiuping He ,&nbsp;Haifeng Gu ,&nbsp;Xin Xu ,&nbsp;Chen Liang ,&nbsp;Yongchao Wang ,&nbsp;Xiao Xu ,&nbsp;Linxuan Jia ,&nbsp;Junhui Chen ,&nbsp;Miaohua Jiang ,&nbsp;Jianming Chen","doi":"10.1016/j.wroa.2024.100229","DOIUrl":"10.1016/j.wroa.2024.100229","url":null,"abstract":"<div><p>Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate <em>Alexandrium minutum</em> is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate <em>Euplotes balteatus</em> on cell density and PSTs transfer in simulated <em>A. minutum</em> blooms under controlled conditions. <em>E. balteatus</em> exhibited resistance to the PSTs produced by <em>A. minutum</em> with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of <em>A. minutum</em> increased in response to the grazing pressure from <em>E. balteatus</em>. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in <em>E. balteatus</em> before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of <em>E. balteatus</em> on <em>A. minutum</em> promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000197/pdfft?md5=0f6658283a799cc89084b031d9cb77f4&pid=1-s2.0-S2589914724000197-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141393416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatiotemporal estimation of groundwater and surface water conditions by integrating deep learning and physics-based watershed models 通过整合深度学习和基于物理的流域模型,对地下水和地表水状况进行时空估算
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100228
Soobin Kim , Eunhee Lee , Hyoun-Tae Hwang , JongCheol Pyo , Daeun Yun , Sang-Soo Baek , Kyung Hwa Cho
{"title":"Spatiotemporal estimation of groundwater and surface water conditions by integrating deep learning and physics-based watershed models","authors":"Soobin Kim ,&nbsp;Eunhee Lee ,&nbsp;Hyoun-Tae Hwang ,&nbsp;JongCheol Pyo ,&nbsp;Daeun Yun ,&nbsp;Sang-Soo Baek ,&nbsp;Kyung Hwa Cho","doi":"10.1016/j.wroa.2024.100228","DOIUrl":"10.1016/j.wroa.2024.100228","url":null,"abstract":"<div><p>The impacts of climate change on hydrology underscore the urgency of understanding watershed hydrological patterns for sustainable water resource management. The conventional physics-based fully distributed hydrological models are limited due to computational demands, particularly in the case of large-scale watersheds. Deep learning (DL) offers a promising solution for handling large datasets and extracting intricate data relationships. Here, we propose a DL modeling framework, incorporating convolutional neural networks (CNNs) to efficiently replicate physics-based model outputs at high spatial resolution. The goal was to estimate groundwater head and surface water depth in the Sabgyo Stream Watershed, South Korea. The model datasets consisted of input variables, including elevation, land cover, soil type, evapotranspiration, rainfall, and initial hydrological conditions. The initial conditions and target data were obtained from the fully distributed hydrological model HydroGeoSphere (HGS), whereas the other inputs were actual measurements in the field. By optimizing the training sample size, input design, CNN structure, and hyperparameters, we found that CNNs with residual architectures (ResNets) yielded superior performance. The optimal DL model reduces computation time by 45 times compared to the HGS model for monthly hydrological estimations over five years (RMSE 2.35 and 0.29 m for groundwater and surface water, respectively). In addition, our DL framework explored the predictive capabilities of hydrological responses to future climate scenarios. Although the proposed model is cost-effective for hydrological simulations, further enhancements are needed to improve the accuracy of long-term predictions. Ultimately, the proposed DL framework has the potential to facilitate decision-making, particularly in large-scale and complex watersheds.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000185/pdfft?md5=f3b239f09128177971f5235f73909650&pid=1-s2.0-S2589914724000185-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141050653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benchmarks for urine volume generation and phosphorus mass recovery in commercial and institutional buildings 商业和机构建筑的尿量产生和磷质量回收基准
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100227
Lucas Crane , Ashton Merck , Shwetha Delanthamajalu , Khara Grieger , Anna-Maria Marshall , Treavor H. Boyer
{"title":"Benchmarks for urine volume generation and phosphorus mass recovery in commercial and institutional buildings","authors":"Lucas Crane ,&nbsp;Ashton Merck ,&nbsp;Shwetha Delanthamajalu ,&nbsp;Khara Grieger ,&nbsp;Anna-Maria Marshall ,&nbsp;Treavor H. Boyer","doi":"10.1016/j.wroa.2024.100227","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100227","url":null,"abstract":"<div><p>Phosphorus (P) is a finite resource and necessary nutrient for agriculture. Urine contains a higher concentration of P than domestic wastewater, which can be recovered by source separation and treatment (hereafter urine diversion). Commercial and institutional (CI) buildings are a logical location for urine diversion since restrooms account for a substantial fraction of water use and wastewater generation. This study estimated the potential for P recovery from human urine and water savings from reduced flushing in CI buildings, and proposed an approach to identify building types and community layouts that are amenable to implementing urine diversion. The results showed that urine diversion is most advantageous in CI buildings with either high daily occupancy counts or times, such as hospitals, schools, office buildings, and airports. Per occupant P recovery benchmarks were estimated to be between 0.04–0.68 g/cap·d. Per building P recovery rates were estimated to be between 0.002–5.1 kg/d, and per building water savings were estimated to be between 3 and 23 % by volume. Recovered P in the form of phosphate fertilizer and potable water savings could accrue profits and cost reductions that could offset the capital costs of new urine diversion systems within 5 y of operation. Finally, urine diversion systems can be implemented at different levels of decentralization based on community layout and organizational structure, which will require socioeconomic and policy acceptance for wider adoption.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000173/pdfft?md5=66f91225e0a2011d3a44de1a24596460&pid=1-s2.0-S2589914724000173-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A unit process log reduction database for water reuse practitioners 为中水回用从业人员建立单位工艺日志缩减数据库
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-05-01 DOI: 10.1016/j.wroa.2024.100226
Sam Arden , Kyle McGaughy , James Phillips , Linda Hills , Emelyn Chiang , Savana Dumler , Xin ⁽Cissy⁾ Ma , Michael Jahne , Jay Garland
{"title":"A unit process log reduction database for water reuse practitioners","authors":"Sam Arden ,&nbsp;Kyle McGaughy ,&nbsp;James Phillips ,&nbsp;Linda Hills ,&nbsp;Emelyn Chiang ,&nbsp;Savana Dumler ,&nbsp;Xin ⁽Cissy⁾ Ma ,&nbsp;Michael Jahne ,&nbsp;Jay Garland","doi":"10.1016/j.wroa.2024.100226","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100226","url":null,"abstract":"<div><p>Pathogen reduction for the purpose of human health protection is a critical function provided by water reuse systems. Pathogen reduction performance potential is dependent on a wide range of design and operational parameters. Poor understanding of pathogen reduction performance has important consequences—under treatment can jeopardize human health, while over treatment can lead to unnecessary costs and environmental impacts. Documented pathogen reduction potential of the unit processes that make up water reuse treatment trains is based on a highly dispersed and unstructured literature, creating an impediment to practitioners looking to design, model or simply better understand these systems. This review presents a database of compiled log reduction values (LRVs) and log reduction credits (LRCs) for unit processes capable of providing some level of pathogen reduction, with a focus on processes suitable for onsite non-potable water reuse systems. Where reported, we have also compiled all relevant design and operational factors associated with the LRVs and LRCs. Overall, we compiled over 1100 individual LRV data entries for 31 unit processes, and LRCs for 8 unit processes. Results show very inconsistent reporting of influencing parameters, representing a limitation to the use of some of the data. As a standalone resource, the database (included as Supplemental Information) provides water reuse practitioners with easy access to LRV and LRC data. The database is also part of a longer-term effort to optimize the balance between human health protection, potential environmental impacts and cost of water reuse treatment trains.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000161/pdfft?md5=e878b94bd30857426fc32de88f74f8e8&pid=1-s2.0-S2589914724000161-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A macro-level analysis of the socio-economic impacts of climate change driven water scarcity: Incorporating behavioural and resilience aspects 对气候变化造成的水资源短缺的社会经济影响进行宏观分析:纳入行为和复原力因素
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-04-16 DOI: 10.1016/j.wroa.2024.100223
Andrew G Ross , Kevin Connolly , Stefan Vögele , Wilhelm Kuckshinrichs
{"title":"A macro-level analysis of the socio-economic impacts of climate change driven water scarcity: Incorporating behavioural and resilience aspects","authors":"Andrew G Ross ,&nbsp;Kevin Connolly ,&nbsp;Stefan Vögele ,&nbsp;Wilhelm Kuckshinrichs","doi":"10.1016/j.wroa.2024.100223","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100223","url":null,"abstract":"<div><p>Recognising the urgent need to address water scarcity resulting from climate change, there is a growing push to enhance the resilience of water (and related) systems. For instance, policymakers are now urging companies to shift from short-term focused strategies towards long-term approaches to effectively manage water scarcity. This paper utilises a custom-built dynamic multisectoral model to assess the socio-economic impacts at a macro-level of temporary water scarcity. The focus of the analysis is to identify the effects that varying levels of investment foresight may have on economic resilience. Specifically, the model incorporates often overlooked factors such as behavioural and resilience aspects. By considering these key elements, a more comprehensive understanding of the system-wide implications of water scarcity on the broader economy is provided. The analysis shows how firms' foresight, or lack thereof, impacts their response to water scarcity and the subsequent impact on the economy. Sector-specific analyses shed light on the potential negative impacts of water scarcity on sectors like agriculture, food, and electricity production and distribution. Yet, the analysis also reveals that certain sectors can benefit from competitiveness effects, which can mitigate the adverse economic implications of water scarcity. However, it should be noted that these sectors may contribute to a catch-up effect on water use. The policy recommendations arising from this research emphasise the promotion of anticipation and preparedness among firms. It is crucial to prioritise resilience-building measures in all sectors, whether they directly rely on water or not.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000136/pdfft?md5=8a6a8fdd905885be0bb81abfc8e05fa3&pid=1-s2.0-S2589914724000136-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scattered and transmitted light as surrogates for activated carbon residual in advanced wastewater treatment processes: Investigating the influence of particle size 散射光和透射光作为先进废水处理工艺中活性炭残留量的替代物:研究颗粒大小的影响
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-04-09 DOI: 10.1016/j.wroa.2024.100222
Franziska Kirchen , Thomas Fundneider , Louis Gimmel , Michael Thomann , Michael Pulfer , Susanne Lackner
{"title":"Scattered and transmitted light as surrogates for activated carbon residual in advanced wastewater treatment processes: Investigating the influence of particle size","authors":"Franziska Kirchen ,&nbsp;Thomas Fundneider ,&nbsp;Louis Gimmel ,&nbsp;Michael Thomann ,&nbsp;Michael Pulfer ,&nbsp;Susanne Lackner","doi":"10.1016/j.wroa.2024.100222","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100222","url":null,"abstract":"<div><p>The use of powdered activated carbon (PAC) is a common process in advanced wastewater treatment to remove micropollutants. Retention and separation of PAC is essential as PAC loaded with micropollutants should not be released into the environment. Determining the activated carbon (AC) residual in the effluent poses a challenge, as there is currently no on-line measurement method. In this study, the correlation between turbidity, measured by scattered light, and absorption at wavelength of 550 nm (Absorption<sub>550 nm</sub>), measured by transmitted light, was investigated in relation to the AC residue. Linear correlations for turbidity (R<sup>2</sup> = 0.95) and Absorption<sub>550 nm</sub> (R<sup>2</sup> = 1.00) to AC concentrations were observed in both laboratory and full-scale experiments in a pilot plant where superfine PAC was added prior to Pile Cloth Media Filtration (PCMF). Decreasing the particle size (d<sub>50</sub>) while maintaining the same AC concentration leads to increased turbidity: Therefore, a fourfold reduction in d<sub>50</sub> results in a 2- to 3-fold increase in turbidity, whereas a 30-fold reduction in d<sub>50</sub> leads to a 6-to 8-fold increase. Furthermore, the original wastewater turbidity led to a parallel shift in the linear correlation between turbidity and AC. Coagulant doses of up to 400 mg Me<sup>3+</sup>/g AC resulted in a 50% reduction in turbidity. However, higher concentrations from 400 to 1,000 mg Me<sup>3+</sup>/g AC resulted in increased turbidity with only a 30% reduction compared to the initial turbidity. The study also highlights the significance of AC particle size in optical measurements, impacting result accuracy.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000124/pdfft?md5=84e3462cd360e8fd750e27ee841f3757&pid=1-s2.0-S2589914724000124-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140551633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters 捷克共和国的 SARS-CoV-2 废水监测:SARS-CoV-2 RNA 浓度的时空差异以及与临床数据和废水参数的关系
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-03-28 DOI: 10.1016/j.wroa.2024.100220
Kateřina Sovová , Petra Vašíčková , Vojtěch Valášek , David Výravský , Věra Očenášková , Eva Juranová , Milena Bušová , Milan Tuček , Vladimír Bencko , Hana Zvěřinová Mlejnková
{"title":"SARS-CoV-2 wastewater surveillance in the Czech Republic: Spatial and temporal differences in SARS-CoV-2 RNA concentrations and relationship to clinical data and wastewater parameters","authors":"Kateřina Sovová ,&nbsp;Petra Vašíčková ,&nbsp;Vojtěch Valášek ,&nbsp;David Výravský ,&nbsp;Věra Očenášková ,&nbsp;Eva Juranová ,&nbsp;Milena Bušová ,&nbsp;Milan Tuček ,&nbsp;Vladimír Bencko ,&nbsp;Hana Zvěřinová Mlejnková","doi":"10.1016/j.wroa.2024.100220","DOIUrl":"10.1016/j.wroa.2024.100220","url":null,"abstract":"<div><p>This study presents the results of systematic wastewater monitoring of SARS-CoV-2 RNA and basic wastewater parameters from four different wastewater treatment plants (WWTPs) in the Czech Republic over the 2020–2022 epidemic. Two-step reverse-transcription quantitative PCR targeting genes encoding the N and Nsp12 proteins was employed to detect SARS-CoV-2 RNA loading in 420 wastewater samples. The results obtained were used to evaluate the potential of wastewater analysis for describing the epidemiological situation in cities of different sizes and determining temporal differences based on the prevailing SARS-CoV-2 variant. Strong correlations between the number of active and hospitalised COVID‐19 cases in each WWTP catchment area and the concentration of SARS-CoV-2 RNA detected in the wastewater clearly demonstrated the suitability of this wastewater-based epidemiological approach for WWTPs of different sizes and characteristics, despite differences in SARS-CoV-2 variant waves, with some WWTPs showing high predictive potential. This study demonstrated on the data from the Czech Republic that targeted systematic monitoring of wastewater provides sufficiently robust data for surveillance of viral loads in sample populations, and thus contributes to preventing the spread of infection and subsequent introduction of appropriate measures.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000100/pdfft?md5=fe260961c94e9cdda264278fe48888fc&pid=1-s2.0-S2589914724000100-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140400224","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A two-stage partial nitritation-denitritation/anammox (PN-DN/A) process to treat high-solid anaerobic digestion (HSAD) reject water: Verification based on pilot-scale and full-scale projects 处理高固体厌氧消化(HSAD)废水的两阶段部分亚硝酸盐化-反硝酸盐化/氨氧化(PN-DN/A)工艺:基于中试规模和全面规模项目的验证
IF 7.5 2区 环境科学与生态学
Water Research X Pub Date : 2024-01-01 DOI: 10.1016/j.wroa.2024.100213
Yanyan Zhang, Hui Gong, Danyang Zhu, Dandan Lu, Shuyan Zhou, Yayi Wang, Xiaohu Dai
{"title":"A two-stage partial nitritation-denitritation/anammox (PN-DN/A) process to treat high-solid anaerobic digestion (HSAD) reject water: Verification based on pilot-scale and full-scale projects","authors":"Yanyan Zhang,&nbsp;Hui Gong,&nbsp;Danyang Zhu,&nbsp;Dandan Lu,&nbsp;Shuyan Zhou,&nbsp;Yayi Wang,&nbsp;Xiaohu Dai","doi":"10.1016/j.wroa.2024.100213","DOIUrl":"https://doi.org/10.1016/j.wroa.2024.100213","url":null,"abstract":"<div><p>High-solid anaerobic digestion (HSAD) reject water, distinguished by elevated levels of chemical oxygen demand (COD), NH<sub>4</sub><sup>+</sup>-N and an imbalanced COD/TIN, presents a significant challenge for treatment through conventional partial nitritation/ anammox (PN/A) process. This study introduced a revised two-stage PN/A process, namely partial nitritation/denitritation-anammox (PN-DN/A) process. Its effectiveness was investigated through both pilot-scale (12 t/d) and full-scale (400 t/d) operations, showcasing stable operation with an impressive total removal rate of over 90 % for total inorganic nitrogen (TIN) and exceeding 60 % for COD. Notably, 30 % of TIN was eliminated through heterotrophic denitritation in partial nitritation-denitritation (PN-DN) stage, while approximately 55 % of TIN removal occurred in the anammox stage with anaerobic ammonium oxidizing bacteria (AnAOB) enrichment (<em>Candidatus</em> Kuenenia, 25.9 % and 26.6 % relative abundance for pilot and full scale). In the PN-DN stage, aerobic-anaerobic alternation promoted organics elimination (around 50 % COD) and balanced nitrogen species. Microbial and metagenomic analysis verified the coupling between autotrophic and heterotrophic denitritation and demonstrated that PN-DN stage acted as a protective buffer for anammox stage. This comprehensive study highlights the PN-DN/A process's efficacy in stably treating HSAD reject water.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.5,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589914724000033/pdfft?md5=07c36f8eabf8ee67b342196f5e3d5055&pid=1-s2.0-S2589914724000033-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信