Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings最新文献

筛选
英文 中文
Benchmark of Deep Encoder-Decoder Architectures for Head and Neck Tumor Segmentation in Magnetic Resonance Images: Contribution to the HNTSMRG Challenge. 磁共振图像中头颈部肿瘤分割的深度编码器-解码器架构基准:对HNTSMRG挑战的贡献。
Marek Wodzinski
{"title":"Benchmark of Deep Encoder-Decoder Architectures for Head and Neck Tumor Segmentation in Magnetic Resonance Images: Contribution to the HNTSMRG Challenge.","authors":"Marek Wodzinski","doi":"10.1007/978-3-031-83274-1_15","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_15","url":null,"abstract":"<p><p>Radiation therapy is one of the most frequently applied cancer treatments worldwide, especially in the context of head and neck cancer. Today, MRI-guided radiation therapy planning is becoming increasingly popular due to good soft tissue contrast, lack of radiation dose delivered to the patient, and the capability of performing functional imaging. However, MRI-guided radiation therapy requires segmenting of the cancer both before and during radiation therapy. So far, the segmentation was often performed manually by experienced radiologists, however, recent advances in deep learning-based segmentation suggest that it may be possible to perform the segmentation automatically. Nevertheless, the task is arguably more difficult when using MRI compared to e.g. PET-CT because even manual segmentation of head and neck cancer in MRI volumes is challenging and time-consuming. The importance of the problem motivated the researchers to organize the HNTSMRG challenge with the aim of developing the most accurate segmentation methods, both before and during MRI-guided radiation therapy. In this work, we benchmark several different state-of-the-art segmentation architectures to verify whether the recent advances in deep encoder-decoder architectures are impactful for low data regimes and low-contrast tasks like segmenting head and neck cancer in magnetic resonance images. We show that for such cases the traditional residual UNetbased method outperforms (DSC = 0.775/0.701) recent advances such as UNETR (DSC = .617/0.657), SwinUNETR (DSC = 0.757/0.700), or SegMamba (DSC = 0.708/0.683). The proposed method (lWM team) achieved a mean aggregated Dice score on the closed test set at the level of 0.771 and 0.707 for the pre- and mid-therapy segmentation tasks, scoring 14th and 6th place, respectively. The results suggest that proper data preparation, objective function, and preprocessing are more influential for the segmentation of head and neck cancer than deep network architecture.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"204-213"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ensemble Deep Learning Models for Automated Segmentation of Tumor and Lymph Node Volumes in Head and Neck Cancer Using Pre- and Mid-Treatment MRI: Application of Auto3DSeg and SegResNet. 使用治疗前和治疗中MRI自动分割头颈癌肿瘤和淋巴结体积的集成深度学习模型:Auto3DSeg和SegResNet的应用
Dominic LaBella
{"title":"Ensemble Deep Learning Models for Automated Segmentation of Tumor and Lymph Node Volumes in Head and Neck Cancer Using Pre- and Mid-Treatment MRI: Application of Auto3DSeg and SegResNet.","authors":"Dominic LaBella","doi":"10.1007/978-3-031-83274-1_21","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_21","url":null,"abstract":"<p><p>Automated segmentation of gross tumor volumes (GTVp) and lymph nodes (GTVn) in head and neck cancer using MRI presents a critical challenge with significant potential to enhance radiation oncology workflows. In this study, we developed a deep learning pipeline based on the SegResNet architecture, integrated into the Auto3DSeg framework, to achieve fully-automated segmentation on pre-treatment (pre-RT) and mid-treatment (mid-RT) MRI scans as part of the DLaBella29 team submission to the HNTS-MRG 2024 challenge. For Task 1, we used an ensemble of six SegResNet models with predictions fused via weighted majority voting. The models were pre-trained on both pre-RT and mid-RT image-mask pairs, then fine-tuned on pre-RT data, without any pre-processing. For Task 2, an ensemble of five SegResNet models was employed, with predictions fused using majority voting. Pre-processing for Task 2 involved setting all voxels more than 1 cm from the registered pre-RT masks to background (value 0), followed by applying a bounding box to the image. Post-processing for both tasks included removing tumor predictions smaller than 175-200 mm<sup>3</sup> and node predictions under 50-60 mm<sup>3</sup>. Our models achieved testing DSCagg scores of 0.72 and 0.82 for GTVn and GTVp in Task 1 (pre-RT MRI) and testing DSCagg scores of 0.81 and 0.49 for GTVn and GTVp in Task 2 (mid-RT MRI). This study underscores the feasibility and promise of deep learning-based auto-segmentation for improving clinical workflows in radiation oncology, particularly in adaptive radiotherapy. Future efforts will focus on refining mid-RT segmentation performance and further investigating the clinical implications of automated tumor delineation.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"259-273"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge. 磁共振引导应用头颈部肿瘤分割概述(HNTS-MRG) 2024挑战。
Kareem A Wahid, Cem Dede, Dina M El-Habashy, Serageldin Kamel, Michael K Rooney, Yomna Khamis, Moamen R A Abdelaal, Sara Ahmed, Kelsey L Corrigan, Enoch Chang, Stephanie O Dudzinski, Travis C Salzillo, Brigid A McDonald, Samuel L Mulder, Lucas McCullum, Qusai Alakayleh, Carlos Sjogreen, Renjie He, Abdallah S R Mohamed, Stephen Y Lai, John P Christodouleas, Andrew J Schaefer, Mohamed A Naser, Clifton D Fuller
{"title":"Overview of the Head and Neck Tumor Segmentation for Magnetic Resonance Guided Applications (HNTS-MRG) 2024 Challenge.","authors":"Kareem A Wahid, Cem Dede, Dina M El-Habashy, Serageldin Kamel, Michael K Rooney, Yomna Khamis, Moamen R A Abdelaal, Sara Ahmed, Kelsey L Corrigan, Enoch Chang, Stephanie O Dudzinski, Travis C Salzillo, Brigid A McDonald, Samuel L Mulder, Lucas McCullum, Qusai Alakayleh, Carlos Sjogreen, Renjie He, Abdallah S R Mohamed, Stephen Y Lai, John P Christodouleas, Andrew J Schaefer, Mohamed A Naser, Clifton D Fuller","doi":"10.1007/978-3-031-83274-1_1","DOIUrl":"10.1007/978-3-031-83274-1_1","url":null,"abstract":"<p><p>Magnetic resonance (MR)-guided radiation therapy (RT) is enhancing head and neck cancer (HNC) treatment through superior soft tissue contrast and longitudinal imaging capabilities. However, manual tumor segmentation remains a significant challenge, spurring interest in artificial intelligence (AI)-driven automation. To accelerate innovation in this field, we present the Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) 2024 Challenge, a satellite event of the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. This challenge addresses the scarcity of large, publicly available AI-ready adaptive RT datasets in HNC and explores the potential of incorporating multi-timepoint data to enhance RT auto-segmentation performance. Participants tackled two HNC segmentation tasks: automatic delineation of primary gross tumor volume (GTVp) and gross metastatic regional lymph nodes (GTVn) on pre-RT (Task 1) and mid-RT (Task 2) T2-weighted scans. The challenge provided 150 HNC cases for training and 50 for final testing hosted on grand-challenge.org using a Docker submission framework. In total, 19 independent teams from across the world qualified by submitting both their algorithms and corresponding papers, resulting in 18 submissions for Task 1 and 15 submissions for Task 2. Evaluation using the mean aggregated Dice Similarity Coefficient showed top-performing AI methods achieved scores of 0.825 in Task 1 and 0.733 in Task 2. These results surpassed clinician interobserver variability benchmarks, marking significant strides in automated tumor segmentation for MR-guided RT applications in HNC.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"1-35"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925392/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143672251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy. 梯度图辅助头颈部肿瘤分割:mri引导放射治疗的一种放疗前到放疗中方法。
Jintao Ren, Kim Hochreuter, Mathis Ersted Rasmussen, Jesper Folsted Kallehauge, Stine Sofia Korreman
{"title":"Gradient Map-Assisted Head and Neck Tumor Segmentation: A Pre-RT to Mid-RT Approach in MRI-Guided Radiotherapy.","authors":"Jintao Ren, Kim Hochreuter, Mathis Ersted Rasmussen, Jesper Folsted Kallehauge, Stine Sofia Korreman","doi":"10.1007/978-3-031-83274-1_2","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_2","url":null,"abstract":"<p><p>Radiation therapy (RT) is a vital part of treatment for head and neck cancer, where accurate segmentation of gross tumor volume (GTV) is essential for effective treatment planning. This study investigates the use of pre-RT tumor regions and local gradient maps to enhance mid-RT tumor segmentation for head and neck cancer in MRI-guided adaptive radiotherapy. By leveraging pre-RT images and their segmentations as prior knowledge, we address the challenge of tumor localization in mid-RT segmentation. A gradient map of the tumor region from the pre-RT image is computed and applied to mid-RT images to improve tumor boundary delineation. Our approach demonstrated improved segmentation accuracy for both primary GTV (GTVp) and nodal GTV (GTVn), though performance was limited by data constraints. The final DSC <i><sub>agg</sub></i> scores from the challenge's test set evaluation were 0.534 for GTVp, 0.867 for GTVn, and a mean score of 0.70. This method shows potential for enhancing segmentation and treatment planning in adaptive radiotherapy. Team: DCPT-Stine's group.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"36-49"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977786/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信