Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings最新文献
Nikoo Moradi, André Ferreira, Behrus Puladi, Jens Kleesiek, Emad Fatemizadeh, Gijs Luijten, Victor Alves, Jan Egger
{"title":"Comparative Analysis of nnUNet and MedNeXt for Head and Neck Tumor Segmentation in MRI-Guided Radiotherapy.","authors":"Nikoo Moradi, André Ferreira, Behrus Puladi, Jens Kleesiek, Emad Fatemizadeh, Gijs Luijten, Victor Alves, Jan Egger","doi":"10.1007/978-3-031-83274-1_10","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_10","url":null,"abstract":"<p><p>Radiation therapy (RT) is essential in treating head and neck cancer (HNC), with magnetic resonance imaging (MRI)-guided RT offering superior soft tissue contrast and functional imaging. However, manual tumor segmentation is time-consuming and complex, and therefore remains a challenge. In this study, we present our solution as team TUMOR to the HNTS-MRG24 MICCAI Challenge which is focused on automated segmentation of primary gross tumor volumes (GTVp) and metastatic lymph node gross tumor volume (GTVn) in pre-RT and mid-RT MRI images. We utilized the HNTS-MRG2024 dataset, which consists of 150 MRI scans from patients diagnosed with HNC, including original and registered pre-RT and mid-RT T2-weighted images with corresponding segmentation masks for GTVp and GTVn. We employed two state-of-the-art models in deep learning, nnUNet and MedNeXt. For Task 1, we pretrained models on pre-RT registered and mid-RT images, followed by fine-tuning on original pre-RT images. For Task 2, we combined registered pre-RT images, registered pre-RT segmentation masks, and mid-RT data as a multi-channel input for training. Our solution for <b>Task 1</b> achieved 1st place in the final test phase with an aggregated Dice Similarity Coefficient of <b>0.8254</b>, and our solution for <b>Task 2</b> ranked 8th with a score of <b>0.7005</b>. The proposed solution is publicly available at Github Repository.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"136-153"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11982674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144065486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jintao Ren, Kim Hochreuter, Jesper Folsted Kallehauge, Stine Sofia Korreman
{"title":"UMamba Adjustment: Advancing GTV Segmentation for Head and Neck Cancer in MRI-Guided RT with UMamba and NnU-Net ResEnc Planner.","authors":"Jintao Ren, Kim Hochreuter, Jesper Folsted Kallehauge, Stine Sofia Korreman","doi":"10.1007/978-3-031-83274-1_9","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_9","url":null,"abstract":"<p><p>Magnetic Resonance Imaging (MRI) plays a crucial role in MRI-guided adaptive radiotherapy for head and neck cancer (HNC) due to its superior soft-tissue contrast. However, accurately segmenting the gross tumor volume (GTV), which includes both the primary tumor (GTVp) and lymph nodes (GTVn), remains challenging. Recently, two deep learning segmentation innovations have shown great promise: UMamba, which effectively captures long-range dependencies, and the nnU-Net Residual Encoder (ResEnc), which enhances feature extraction through multistage residual blocks. In this study, we integrate these strengths into a novel approach, termed 'UMambaAdj'. Our proposed method was evaluated on the HNTS-MRG 2024 challenge test set using pre-RT T2-weighted MRI images, achieving an aggregated Dice Similarity Coefficient ( <math><mi>D</mi> <mi>S</mi> <msub><mrow><mi>C</mi></mrow> <mrow><mi>a</mi> <mi>g</mi> <mi>g</mi></mrow> </msub> </math> ) of 0.751 for GTVp and 0.842 for GTVn, with a mean <math><mi>D</mi> <mi>S</mi> <msub><mrow><mi>C</mi></mrow> <mrow><mi>a</mi> <mi>g</mi> <mi>g</mi></mrow> </msub> </math> of 0.796. This approach demonstrates potential for more precise tumor delineation in MRI-guided adaptive radiotherapy, ultimately improving treatment outcomes for HNC patients. Team: DCPT-Stine's group.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"123-135"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11997962/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144057035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Litingyu Wang, Wenjun Liao, Shichuan Zhang, Guotai Wang
{"title":"Head and Neck Tumor Segmentation of MRI from Pre- and Mid-Radiotherapy with Pre-Training, Data Augmentation and Dual Flow UNet.","authors":"Litingyu Wang, Wenjun Liao, Shichuan Zhang, Guotai Wang","doi":"10.1007/978-3-031-83274-1_5","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_5","url":null,"abstract":"<p><p>Head and neck tumors and metastatic lymph nodes are crucial for treatment planning and prognostic analysis. Accurate segmentation and quantitative analysis of these structures require pixel-level annotation, making automated segmentation techniques essential for the diagnosis and treatment of head and neck cancer. In this study, we investigated the effects of multiple strategies on the segmentation of pre-radiotherapy (pre-RT) and mid-radiotherapy (mid-RT) images. For the segmentation of pre-RT images, we utilized: 1) a fully supervised learning approach, and 2) the same approach enhanced with pre-trained weights and the MixUp data augmentation technique. For mid-RT images, we introduced a novel computational-friendly network architecture that features separate encoders for mid-RT images and registered pre-RT images with their labels. The mid-RT encoder branch integrates information from pre-RT images and labels progressively during the forward propagation. We selected the highest-performing model from each fold and used their predictions to create an ensemble average for inference. In the final test, our models achieved a segmentation performance of 82.38% for pre-RT and 72.53% for mid-RT on aggregated Dice Similarity Coefficient (DSC) as HiLab. Our code is available at https://github.com/WltyBY/HNTS-MRG2024_train_code.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"75-86"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12022123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144048668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ensemble Deep Learning Models for Automated Segmentation of Tumor and Lymph Node Volumes in Head and Neck Cancer Using Pre- and Mid-Treatment MRI: Application of Auto3DSeg and SegResNet.","authors":"Dominic LaBella","doi":"10.1007/978-3-031-83274-1_21","DOIUrl":"10.1007/978-3-031-83274-1_21","url":null,"abstract":"<p><p>Automated segmentation of gross tumor volumes (GTVp) and lymph nodes (GTVn) in head and neck cancer using MRI presents a critical challenge with significant potential to enhance radiation oncology workflows. In this study, we developed a deep learning pipeline based on the SegResNet architecture, integrated into the Auto3DSeg framework, to achieve fully-automated segmentation on pre-treatment (pre-RT) and mid-treatment (mid-RT) MRI scans as part of the DLaBella29 team submission to the HNTS-MRG 2024 challenge. For Task 1, we used an ensemble of six SegResNet models with predictions fused via weighted majority voting. The models were pre-trained on both pre-RT and mid-RT image-mask pairs, then fine-tuned on pre-RT data, without any pre-processing. For Task 2, an ensemble of five SegResNet models was employed, with predictions fused using majority voting. Pre-processing for Task 2 involved setting all voxels more than 1 cm from the registered pre-RT masks to background (value 0), followed by applying a bounding box to the image. Post-processing for both tasks included removing tumor predictions smaller than 175-200 mm<sup>3</sup> and node predictions under 50-60 mm<sup>3</sup>. Our models achieved testing DSCagg scores of 0.72 and 0.82 for GTVn and GTVp in Task 1 (pre-RT MRI) and testing DSCagg scores of 0.81 and 0.49 for GTVn and GTVp in Task 2 (mid-RT MRI). This study underscores the feasibility and promise of deep learning-based auto-segmentation for improving clinical workflows in radiation oncology, particularly in adaptive radiotherapy. Future efforts will focus on refining mid-RT segmentation performance and further investigating the clinical implications of automated tumor delineation.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"259-273"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Head and Neck Tumor Segmentation in MRI: The Impact of Image Preprocessing and Model Ensembling.","authors":"Mehdi Astaraki, Iuliana Toma-Dasu","doi":"10.1007/978-3-031-83274-1_8","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_8","url":null,"abstract":"<p><p>The adoption of online adaptive MR-guided radiotherapy (MRgRT) for Head and Neck Cancer (HNC) treatment faces challenges due to the complexity of manual HNC tumor delineation. This study focused on the problem of HNC tumor segmentation and investigated the effects of different preprocessing techniques, robust segmentation models, and ensembling steps on segmentation accuracy to propose an optimal solution. We contributed to the MICCAI Head and Neck Tumor Segmentation for MR-Guided Applications (HNTS-MRG) challenge which contains segmentation of HNC tumors in Task1) pre-RT and Task2) mid-RT MR images. In the internal validation phase, the most accurate results were achieved by ensembling two models trained on maximally cropped and contrast-enhanced images which yielded average volumetric Dice scores of (0.680, 0.785) and (0.493, 0.810) for (GTVp, GTVn) on pre-RT and mid-RT volumes. For the final testing phase, the models were submitted under the team's name of \"Stockholm_Trio\" and the overall segmentation performance achieved aggregated Dice scores of (0.795, 0.849) and (0.553, 0.865) for pre- and mid-RT tasks, respectively. The developed models are available at https://github.com/Astarakee/miccai24.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"112-122"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053515/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Benchmark of Deep Encoder-Decoder Architectures for Head and Neck Tumor Segmentation in Magnetic Resonance Images: Contribution to the HNTSMRG Challenge.","authors":"Marek Wodzinski","doi":"10.1007/978-3-031-83274-1_15","DOIUrl":"10.1007/978-3-031-83274-1_15","url":null,"abstract":"<p><p>Radiation therapy is one of the most frequently applied cancer treatments worldwide, especially in the context of head and neck cancer. Today, MRI-guided radiation therapy planning is becoming increasingly popular due to good soft tissue contrast, lack of radiation dose delivered to the patient, and the capability of performing functional imaging. However, MRI-guided radiation therapy requires segmenting of the cancer both before and during radiation therapy. So far, the segmentation was often performed manually by experienced radiologists, however, recent advances in deep learning-based segmentation suggest that it may be possible to perform the segmentation automatically. Nevertheless, the task is arguably more difficult when using MRI compared to e.g. PET-CT because even manual segmentation of head and neck cancer in MRI volumes is challenging and time-consuming. The importance of the problem motivated the researchers to organize the HNTSMRG challenge with the aim of developing the most accurate segmentation methods, both before and during MRI-guided radiation therapy. In this work, we benchmark several different state-of-the-art segmentation architectures to verify whether the recent advances in deep encoder-decoder architectures are impactful for low data regimes and low-contrast tasks like segmenting head and neck cancer in magnetic resonance images. We show that for such cases the traditional residual UNetbased method outperforms (DSC = 0.775/0.701) recent advances such as UNETR (DSC = .617/0.657), SwinUNETR (DSC = 0.757/0.700), or SegMamba (DSC = 0.708/0.683). The proposed method (lWM team) achieved a mean aggregated Dice score on the closed test set at the level of 0.771 and 0.707 for the pre- and mid-therapy segmentation tasks, scoring 14th and 6th place, respectively. The results suggest that proper data preparation, objective function, and preprocessing are more influential for the segmentation of head and neck cancer than deep network architecture.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"204-213"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143813332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kaiyuan Ji, Zhihan Wu, Jing Han, Jun Jia, Guangtao Zhai, Jiannan Liu
{"title":"Application of 3D nnU-Net with Residual Encoder in the 2024 MICCAI Head and Neck Tumor Segmentation Challenge.","authors":"Kaiyuan Ji, Zhihan Wu, Jing Han, Jun Jia, Guangtao Zhai, Jiannan Liu","doi":"10.1007/978-3-031-83274-1_20","DOIUrl":"10.1007/978-3-031-83274-1_20","url":null,"abstract":"<p><p>This article explores the potential of deep learning technologies for the automated identification and delineation of primary tumor volumes (GTVp) and metastatic lymph nodes (GTVn) in radiation therapy planning, specifically using MRI data. Utilizing the high-quality dataset provided by the 2024 MICCAI Head and Neck Tumor Segmentation Challenge, this study employs the 3DnnU-Net model for automatic tumor segmentation. Our experiments revealed that the model performs poorly with high background ratios, which prompted a retraining with selected data of specific background ratios to improve segmentation performance. The results demonstrate that the model performs well on data with low background ratios, but optimization is still needed for high background ratios. Additionally, the model shows better performance in segmenting GTVn compared to GTVp, with DSCagg scores of 0.6381 and 0.8064 for Task 1 and Task 2, respectively, during the final test phase. Future work will focus on optimizing the model and adjusting the network architecture, aiming to enhance the segmentation of GTVp while maintaining the effectiveness of GTVn segmentation to increase accuracy and reliability in clinical applications.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"250-258"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097725/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144145267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Awj Twam, Adrian Celaya, Evan Lim, Khaled Elsayes, David Fuentes, Tucker Netherton
{"title":"Head and Neck Gross Tumor Volume Automatic Segmentation Using PocketNet.","authors":"Awj Twam, Adrian Celaya, Evan Lim, Khaled Elsayes, David Fuentes, Tucker Netherton","doi":"10.1007/978-3-031-83274-1_19","DOIUrl":"10.1007/978-3-031-83274-1_19","url":null,"abstract":"<p><p>Head and neck cancer (HNC) represents a significant global health burden, often requiring complex treatment strategies, including surgery, chemotherapy, and radiation therapy. Accurate delineation of tumor volumes is critical for effective treatment, particularly in MR-guided interventions, where soft tissue contrast enhances visualization of tumor boundaries. Manual segmentation of gross tumor volumes (GTV) is labor intensive, time-consuming and prone to variability, motivating the development of automated segmentation techniques. Convolutional neural networks (CNNs) have emerged as powerful tools in this task, offering significant improvements in speed and consistency. In this study, we participated as Team Pocket in Task 1 of the HNTS-MRG 2024 Grand Challenge, which focuses on the segmentation of gross tumor volumes of the primary tumor (GTVp) and the nodal tumor (GTVn) in pre-radiotherapy MR images for HNC. We evaluated the application of PocketNet, a lightweight CNN architecture, for this task. Results for the final test phase of the challenge show that PocketNet achieved an aggregated Dice Sorensen Coefficient (DSCagg) of 0.808 for GTVn and 0.732 for GTVp, with an overall mean performance of 0.77. These findings demonstrate the potential of PocketNet as an efficient and accurate solution for automated tumor segmentation in MR-guided HNC treatment workflows, with opportunities for further optimization to enhance performance.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"241-249"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12151156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144268394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yichen An, Zhimin Wang, Eric Ma, Hao Jiang, Weiguo Lu
{"title":"Enhancing nnUNetv2 Training with Autoencoder Architecture for Improved Medical Image Segmentation.","authors":"Yichen An, Zhimin Wang, Eric Ma, Hao Jiang, Weiguo Lu","doi":"10.1007/978-3-031-83274-1_17","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_17","url":null,"abstract":"<p><p>Auto-segmentation of gross tumor volumes (GTVs) in head and neck cancer (HNC) using MRI-guided radiotherapy (RT) images presents a significant challenge that can greatly enhance clinical workflows in radiation oncology. In this study, we developed a novel deep learning model based on the nnUNetv2 framework, augmented with an autoencoder architecture. Our model introduces the original training images as an additional input channel and incorporates an MSE loss function to improve segmentation accuracy. The model was trained on a dataset of 150 HNC patients, with a private evaluation of 50 test patients as part of the HNTS-MRG 2024 challenge. The aggregated Dice similarity coefficient (DSCagg) for metastatic lymph nodes (GTVn) reached 0.8516, while the primary tumor (GTVp) scored 0.7318, with an average DSCagg of 0.7917 across both structures. By introducing an autoencoder output channel and combining dice loss with mean squared error (MSE) loss, the enhanced nnUNet architecture effectively learned additional image features to enhance segmentation accuracy. These findings suggest that deep learning models like our modified nnUNetv2 framework can significantly improve auto-segmentation accuracy in MRI-guided RT for HNC, contributing to more precise and efficient clinical workflows.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"222-229"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053516/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144039872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Deep Learning for Longitudinal Gross Tumor Volume Segmentation in MRI-Guided Adaptive Radiotherapy for Head and Neck Cancer.","authors":"Xin Tie, Weijie Chen, Zachary Huemann, Brayden Schott, Nuohao Liu, Tyler J Bradshaw","doi":"10.1007/978-3-031-83274-1_7","DOIUrl":"https://doi.org/10.1007/978-3-031-83274-1_7","url":null,"abstract":"<p><p>Accurate segmentation of gross tumor volume (GTV) is essential for effective MRI-guided adaptive radiotherapy (MRgART) in head and neck cancer. However, manual segmentation of the GTV over the course of therapy is time-consuming and prone to interobserver variability. Deep learning (DL) has the potential to overcome these challenges by automatically delineating GTVs. In this study, our team, <i>UW LAIR</i>, tackled the challenges of both pre-radiotherapy (pre-RT) (Task 1) and mid-radiotherapy (mid-RT) (Task 2) tumor volume segmentation. To this end, we developed a series of DL models for longitudinal GTV segmentation. The backbone of our models for both tasks was SegResNet with deep supervision. For Task 1, we trained the model using a combined dataset of pre-RT and mid-RT MRI data, which resulted in the improved aggregated Dice similarity coefficient (DSC<sub>agg</sub>) on a hold-out internal testing set compared to models trained solely on pre-RT MRI data. In Task 2, we introduced mask-aware attention modules, enabling pre-RT GTV masks to influence intermediate features learned from mid-RT data. This attention-based approach yielded slight improvements over the baseline method, which concatenated mid-RT MRI with pre-RT GTV masks as input. In the final testing phase, the ensemble of 10 pre-RT segmentation models achieved an average DSC<sub>agg</sub> of 0.794, with 0.745 for primary GTV (GTVp) and 0.844 for metastatic lymph nodes (GTVn) in Task 1. For Task 2, the ensemble of 10 mid-RT segmentation models attained an average DSC<sub>agg</sub> of 0.733, with 0.607 for GTVp and 0.859 for GTVn, leading us to achieve 1st place. In summary, we presented a collection of DL models that could facilitate GTV segmentation in MRgART, offering the potential to streamline radiation oncology workflows.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"99-111"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036643/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144047865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}