利用自编码器架构增强nnUNetv2训练以改进医学图像分割。

Yichen An, Zhimin Wang, Eric Ma, Hao Jiang, Weiguo Lu
{"title":"利用自编码器架构增强nnUNetv2训练以改进医学图像分割。","authors":"Yichen An, Zhimin Wang, Eric Ma, Hao Jiang, Weiguo Lu","doi":"10.1007/978-3-031-83274-1_17","DOIUrl":null,"url":null,"abstract":"<p><p>Auto-segmentation of gross tumor volumes (GTVs) in head and neck cancer (HNC) using MRI-guided radiotherapy (RT) images presents a significant challenge that can greatly enhance clinical workflows in radiation oncology. In this study, we developed a novel deep learning model based on the nnUNetv2 framework, augmented with an autoencoder architecture. Our model introduces the original training images as an additional input channel and incorporates an MSE loss function to improve segmentation accuracy. The model was trained on a dataset of 150 HNC patients, with a private evaluation of 50 test patients as part of the HNTS-MRG 2024 challenge. The aggregated Dice similarity coefficient (DSCagg) for metastatic lymph nodes (GTVn) reached 0.8516, while the primary tumor (GTVp) scored 0.7318, with an average DSCagg of 0.7917 across both structures. By introducing an autoencoder output channel and combining dice loss with mean squared error (MSE) loss, the enhanced nnUNet architecture effectively learned additional image features to enhance segmentation accuracy. These findings suggest that deep learning models like our modified nnUNetv2 framework can significantly improve auto-segmentation accuracy in MRI-guided RT for HNC, contributing to more precise and efficient clinical workflows.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"222-229"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053516/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhancing nnUNetv2 Training with Autoencoder Architecture for Improved Medical Image Segmentation.\",\"authors\":\"Yichen An, Zhimin Wang, Eric Ma, Hao Jiang, Weiguo Lu\",\"doi\":\"10.1007/978-3-031-83274-1_17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Auto-segmentation of gross tumor volumes (GTVs) in head and neck cancer (HNC) using MRI-guided radiotherapy (RT) images presents a significant challenge that can greatly enhance clinical workflows in radiation oncology. In this study, we developed a novel deep learning model based on the nnUNetv2 framework, augmented with an autoencoder architecture. Our model introduces the original training images as an additional input channel and incorporates an MSE loss function to improve segmentation accuracy. The model was trained on a dataset of 150 HNC patients, with a private evaluation of 50 test patients as part of the HNTS-MRG 2024 challenge. The aggregated Dice similarity coefficient (DSCagg) for metastatic lymph nodes (GTVn) reached 0.8516, while the primary tumor (GTVp) scored 0.7318, with an average DSCagg of 0.7917 across both structures. By introducing an autoencoder output channel and combining dice loss with mean squared error (MSE) loss, the enhanced nnUNet architecture effectively learned additional image features to enhance segmentation accuracy. These findings suggest that deep learning models like our modified nnUNetv2 framework can significantly improve auto-segmentation accuracy in MRI-guided RT for HNC, contributing to more precise and efficient clinical workflows.</p>\",\"PeriodicalId\":520475,\"journal\":{\"name\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"volume\":\"15273 \",\"pages\":\"222-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12053516/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-83274-1_17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-83274-1_17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用mri引导放射治疗(RT)图像对头颈癌(HNC)的总肿瘤体积(gtv)进行自动分割是一项重大挑战,可以极大地增强放射肿瘤学的临床工作流程。在本研究中,我们开发了一种基于nnUNetv2框架的新型深度学习模型,并增强了自动编码器架构。我们的模型引入原始训练图像作为额外的输入通道,并结合MSE损失函数来提高分割精度。该模型在150名HNC患者的数据集上进行了训练,并对50名测试患者进行了私人评估,作为HNTS-MRG 2024挑战的一部分。转移性淋巴结(GTVn)的聚合Dice相似系数(DSCagg)为0.8516,原发肿瘤(GTVp)为0.7318,两种结构的平均DSCagg为0.7917。通过引入自编码器输出通道,将骰子损失与均方误差(MSE)损失相结合,增强的nnUNet架构有效地学习了额外的图像特征,提高了分割精度。这些发现表明,像我们改进的nnUNetv2框架这样的深度学习模型可以显着提高mri引导下HNC RT的自动分割准确性,有助于更精确和高效的临床工作流程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing nnUNetv2 Training with Autoencoder Architecture for Improved Medical Image Segmentation.

Auto-segmentation of gross tumor volumes (GTVs) in head and neck cancer (HNC) using MRI-guided radiotherapy (RT) images presents a significant challenge that can greatly enhance clinical workflows in radiation oncology. In this study, we developed a novel deep learning model based on the nnUNetv2 framework, augmented with an autoencoder architecture. Our model introduces the original training images as an additional input channel and incorporates an MSE loss function to improve segmentation accuracy. The model was trained on a dataset of 150 HNC patients, with a private evaluation of 50 test patients as part of the HNTS-MRG 2024 challenge. The aggregated Dice similarity coefficient (DSCagg) for metastatic lymph nodes (GTVn) reached 0.8516, while the primary tumor (GTVp) scored 0.7318, with an average DSCagg of 0.7917 across both structures. By introducing an autoencoder output channel and combining dice loss with mean squared error (MSE) loss, the enhanced nnUNet architecture effectively learned additional image features to enhance segmentation accuracy. These findings suggest that deep learning models like our modified nnUNetv2 framework can significantly improve auto-segmentation accuracy in MRI-guided RT for HNC, contributing to more precise and efficient clinical workflows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信