Kaiyuan Ji, Zhihan Wu, Jing Han, Jun Jia, Guangtao Zhai, Jiannan Liu
{"title":"带有残差编码器的三维nnU-Net在2024 MICCAI头颈部肿瘤分割挑战赛中的应用。","authors":"Kaiyuan Ji, Zhihan Wu, Jing Han, Jun Jia, Guangtao Zhai, Jiannan Liu","doi":"10.1007/978-3-031-83274-1_20","DOIUrl":null,"url":null,"abstract":"<p><p>This article explores the potential of deep learning technologies for the automated identification and delineation of primary tumor volumes (GTVp) and metastatic lymph nodes (GTVn) in radiation therapy planning, specifically using MRI data. Utilizing the high-quality dataset provided by the 2024 MICCAI Head and Neck Tumor Segmentation Challenge, this study employs the 3DnnU-Net model for automatic tumor segmentation. Our experiments revealed that the model performs poorly with high background ratios, which prompted a retraining with selected data of specific background ratios to improve segmentation performance. The results demonstrate that the model performs well on data with low background ratios, but optimization is still needed for high background ratios. Additionally, the model shows better performance in segmenting GTVn compared to GTVp, with DSCagg scores of 0.6381 and 0.8064 for Task 1 and Task 2, respectively, during the final test phase. Future work will focus on optimizing the model and adjusting the network architecture, aiming to enhance the segmentation of GTVp while maintaining the effectiveness of GTVn segmentation to increase accuracy and reliability in clinical applications.</p>","PeriodicalId":520475,"journal":{"name":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","volume":"15273 ","pages":"250-258"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097725/pdf/","citationCount":"0","resultStr":"{\"title\":\"Application of 3D nnU-Net with Residual Encoder in the 2024 MICCAI Head and Neck Tumor Segmentation Challenge.\",\"authors\":\"Kaiyuan Ji, Zhihan Wu, Jing Han, Jun Jia, Guangtao Zhai, Jiannan Liu\",\"doi\":\"10.1007/978-3-031-83274-1_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This article explores the potential of deep learning technologies for the automated identification and delineation of primary tumor volumes (GTVp) and metastatic lymph nodes (GTVn) in radiation therapy planning, specifically using MRI data. Utilizing the high-quality dataset provided by the 2024 MICCAI Head and Neck Tumor Segmentation Challenge, this study employs the 3DnnU-Net model for automatic tumor segmentation. Our experiments revealed that the model performs poorly with high background ratios, which prompted a retraining with selected data of specific background ratios to improve segmentation performance. The results demonstrate that the model performs well on data with low background ratios, but optimization is still needed for high background ratios. Additionally, the model shows better performance in segmenting GTVn compared to GTVp, with DSCagg scores of 0.6381 and 0.8064 for Task 1 and Task 2, respectively, during the final test phase. Future work will focus on optimizing the model and adjusting the network architecture, aiming to enhance the segmentation of GTVp while maintaining the effectiveness of GTVn segmentation to increase accuracy and reliability in clinical applications.</p>\",\"PeriodicalId\":520475,\"journal\":{\"name\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"volume\":\"15273 \",\"pages\":\"250-258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-83274-1_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and Neck Tumor Segmentation for MR-Guided Applications : First MICCAI Challenge, HNTS-MRG 2024, held in conjunction with MICCAI 2024, Marrakesh, Morocco, October 17, 2024, proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-83274-1_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Application of 3D nnU-Net with Residual Encoder in the 2024 MICCAI Head and Neck Tumor Segmentation Challenge.
This article explores the potential of deep learning technologies for the automated identification and delineation of primary tumor volumes (GTVp) and metastatic lymph nodes (GTVn) in radiation therapy planning, specifically using MRI data. Utilizing the high-quality dataset provided by the 2024 MICCAI Head and Neck Tumor Segmentation Challenge, this study employs the 3DnnU-Net model for automatic tumor segmentation. Our experiments revealed that the model performs poorly with high background ratios, which prompted a retraining with selected data of specific background ratios to improve segmentation performance. The results demonstrate that the model performs well on data with low background ratios, but optimization is still needed for high background ratios. Additionally, the model shows better performance in segmenting GTVn compared to GTVp, with DSCagg scores of 0.6381 and 0.8064 for Task 1 and Task 2, respectively, during the final test phase. Future work will focus on optimizing the model and adjusting the network architecture, aiming to enhance the segmentation of GTVp while maintaining the effectiveness of GTVn segmentation to increase accuracy and reliability in clinical applications.