Andrew Hayles, Huu Ngoc Nguyen, Markos Alemie, Jitraporn Vongsvivut, Neethu Ninan, Richard Bright, Panthihage Ruvini Dabare, Christopher Gibson, Vi Khanh Truong, Krasimir Vasilev
{"title":"Electrostatic charge at the biomaterial-pathogen interface influences antibiotic efficacy.","authors":"Andrew Hayles, Huu Ngoc Nguyen, Markos Alemie, Jitraporn Vongsvivut, Neethu Ninan, Richard Bright, Panthihage Ruvini Dabare, Christopher Gibson, Vi Khanh Truong, Krasimir Vasilev","doi":"10.1007/s44307-025-00061-z","DOIUrl":"10.1007/s44307-025-00061-z","url":null,"abstract":"<p><p>Implant-associated infections (IAI) are a considerable burden for healthcare systems globally. While novel anti-infective biomaterials are being pursued, prophylactic antibiotic treatment remains the most important intervention for mitigating IAI. The antibiotic tolerance of bacteria has been widely studied, but until recently, the contributions of biomaterial-pathogen interactions have been overlooked. In the present study, we investigate how material electrostatic charge influences the physiological state of the most clinically challenging pathogen-Staphylococcus aureus, and the implications on its antibiotic tolerance. We utilized a combination of techniques, including quantitative gene expression and synchrotron-sourced attenuated total reflectance Fourier-transform microspectroscopy, to characterize this phenomenon - elucidating how surface attachment to differently charged substrates drives the pathogen to modify its phenotype. Subsequently, we found a direct relationship between the activity of oppositely charged antibiotics (vancomycin and cefazolin) and the biomaterial-pathogen interface, which we determined to be governed by material electrostatic properties. The findings of the present study have the potential to inform the development of enhanced procedures of antibiotic prophylaxis by instructing personalized biomaterial-antibiotic pairing strategies. These new insights hold promise to contribute to reducing the rate of IAI by enabling clinicians and surgeons to maximize the efficacy of prophylactic antibiotic treatments during implant placement procedures.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 2","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143775257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Simplifying the protocol for low-pollution-risk, efficient mouse myoblast isolation and differentiation.","authors":"Yi Luo, Jia-Dong Zhang, Xue-Gang Zhao, Wei-Cai Chen, Wan-Xin Chen, Ya-Rui Hou, Ya-Han Ren, Zhen-Dong Xiao, Qi Zhang, Li-Ting Diao, Shu-Juan Xie","doi":"10.1007/s44307-025-00060-0","DOIUrl":"10.1007/s44307-025-00060-0","url":null,"abstract":"<p><p>Myoblasts are the primary effector cells that play crucial roles in myogenesis and muscle regeneration following injury. However, isolating purified primary myoblasts from murine skeletal muscle poses challenges for junior researchers. Here, we present a simplified, low-risk, and optimized protocol for the extraction and enrichment of these myogenic progenitor cells. Additionally, we demonstrate that, compared to F10 (Ham's F-10)-based medium, DMEM (Dulbecco's Modified Eagle's Medium)-based differentiation medium provides a more conducive environment for myoblasts differentiation. This enhancement improves the efficiency of myofiber formation and the expression of myogenic markers.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11896905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143607719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular mapping of candidate genes in determining red color of perilla leaf.","authors":"Guanwen Xie, Yuxuan Zhang, Shen Xiao, Duan Wu, Hongbin Wang, Qi Shen","doi":"10.1007/s44307-025-00058-8","DOIUrl":"10.1007/s44307-025-00058-8","url":null,"abstract":"<p><p>Perilla frutescens is a traditional medicinal plant and functional food in Asian communities, characterized by distinct red and green leaf types that have significant phenotypic and medicinal implications. However, the genetic mechanisms controlling anthocyanin synthesis in this species remain unclear. Genetic analysis serves as a powerful tool for investigating the pivotal genes and regulatory mechanisms governing anthocyanin accumulation in red and green perilla. In this study, an F2 segregation population was constructed from a hybrid of red and green perilla, and representative samples were subjected to mix-sequencing using BSA-seq and BSR-seq. A 6.0 Mb candidate region on chromosome 8 was identified, pinpointing PfMYB113b, PfC4H1, and PfF3H as key genes involved in anthocyanin biosynthesis. The insertion of a repeat sequence in the promoter of PfMYB113b leads to alterations in gene expression levels. Furthermore, PfMYB113b regulates the transcription of PfC4H1 and PfF3H, thereby influencing anthocyanin synthesis. These findings enhance our understanding of the genetic regulatory mechanisms underlying leaf coloration in perilla.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143416662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cunchun Dai, Ying Liu, Fan Lv, Ping Cheng, Shaoqi Qu
{"title":"An alternative approach to combat multidrug-resistant bacteria: new insights into traditional Chinese medicine monomers combined with antibiotics.","authors":"Cunchun Dai, Ying Liu, Fan Lv, Ping Cheng, Shaoqi Qu","doi":"10.1007/s44307-025-00059-7","DOIUrl":"10.1007/s44307-025-00059-7","url":null,"abstract":"<p><p>Antibiotic treatment is crucial for controlling bacterial infections, but it is greatly hindered by the global prevalence of multidrug-resistant (MDR) bacteria. Although traditional Chinese medicine (TCM) monomers have shown high efficacy against MDR infections, the inactivation of bacteria induced by TCM is often incomplete and leads to infection relapse. The synergistic combination of TCM and antibiotics emerges as a promising strategy to mitigate the limitations inherent in both treatment modalities when independently administered. This review begins with a succinct exploration of the molecular mechanisms such as the antibiotic resistance, which informs the antibiotic discovery efforts. We subsequently provide an overview of the therapeutic effects of TCM/antibiotic combinations that have been developed. Finally, the factors that affect the therapeutic outcomes of these combinations and their underlying molecular mechanisms are systematically summarized. This overview offers insights into alternative strategies to treat clinical infections associated with MDR bacteria and the development of novel TCM/antibiotic combination therapies, with the goal of guiding their appropriate usage and further development.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805748/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143367221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative study of Mg/Al-LDH and Mg/Fe-LDH on adsorption and loss control of 2,4-dichlorophenoxyacetic acid.","authors":"Zeyuan Zhang, Liangjie Tang, Jing Luo, Jinfang Tan, Xiaoqian Jiang","doi":"10.1007/s44307-024-00055-3","DOIUrl":"10.1007/s44307-024-00055-3","url":null,"abstract":"<p><p>Low efficiency and high surface runoff of 2,4-dichlorophenoxyacetic acid (2,4-D) from agricultural field threaten crop yield severely. Layered double hydroxides (LDH) have shown promising adsorption properties for 2,4-D. However, the comparison of two environmentally friendly LDHs (i.e. Mg/Al-LDH vs Mg/Fe-LDH) on adsorption of 2,4-D and corresponding intrinsic mechanisms are still unclear, and the studies on the leaching control of 2,4-D by LDHs in soil environment are particularly limited. In this study, Mg/Al-LDH and Mg/Fe-LDH were selected to conduct their adsorption kinetics experiment for 2,4-D combined with the characterization technology. The results showed that the adsorption capacity of Mg/Al-LDH and Mg/Fe-LDH for 2,4-D was up to 242 mg kg<sup>-1</sup> and 64 mg kg<sup>-1</sup>, respectively, which were negatively correlated with pH. Adsorption mechanisms of both Mg/Al-LDH and Mg/Fe-LDH for 2,4-D are dominated by chemical adsorption, including electrostatic attraction and inner sphere complexation, but no interlayer adsorption mechanism. Mg/Al-LDH contains smaller metal ion radius, which provides greater surface charge density, resulting in greater electrostatic attraction and inner sphere complexation to 2,4-D compared to Mg/Fe-LDH. The greater adsorption capacity of Mg/Al-LDH for 2,4-D was driven by the higher adsorption energy (E<sub>ads</sub>) and lower electron density, as corroborated by density functional theory (DFT) calculation. The soil column experiment further verified that Mg/Al-LDH could control the loss of 2,4-D more effectively, and the leaching amount could be significantly reduced by 61.7%, while the effect of Mg/Fe-LDH was only 24.2%. This study provides theoretical guidance for screening more potential LDH types to solve the leaching loss of 2,4-D from soil and improve its effectiveness in agricultural production.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443660/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai-Lin Mai, Wei-Qi Pan, Zheng-Shi Lin, Yang Wang, Zi-Feng Yang
{"title":"Pathogenesis of influenza and SARS-CoV-2 co-infection at the extremes of age: decipher the ominous tales of immune vulnerability.","authors":"Kai-Lin Mai, Wei-Qi Pan, Zheng-Shi Lin, Yang Wang, Zi-Feng Yang","doi":"10.1007/s44307-025-00057-9","DOIUrl":"10.1007/s44307-025-00057-9","url":null,"abstract":"<p><p>The co-circulation of influenza and SARS-CoV-2 has led to co-infection events, primarily affecting children and older adults, who are at higher risk for severe disease. Although co-infection prevalence is relatively low, it is associated with worse outcomes compared to mono-infections. Previous studies have shown that the outcomes of co-infection depend on multiple factors, including viral interference, virus-host interaction and host response. Children and the elderly exhibit distinct patterns of antiviral response, which involve airway epithelium, mucociliary clearance, innate and adaptive immune cells, and inflammatory mediators. This review explores the pathogeneses of SARS-CoV-2 and influenza co-infection, focusing on the antiviral responses in children and the elderly. By comparing immature immunity in children and immune senescence in older adults, we aim to provide insights for the clinical management of severe co-infection cases.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12443670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Unravelling the aromatic symphony: redirecting bifunctional mushroom synthases towards linalool monofunctionality.","authors":"Rehka T, Fu Lin, Xixian Chen, Congqiang Zhang","doi":"10.1007/s44307-024-00056-2","DOIUrl":"10.1007/s44307-024-00056-2","url":null,"abstract":"<p><p>Enzymes are the cornerstone of biocatalysis, biosynthesis and synthetic biology. However, their applicability is often limited by low substrate selectivity. A prime example is the bifunctional linalool/nerolidol synthase (LNS) that can use both geranyl diphosphate (GPP) and farnesyl diphosphate (FPP) to produce linalool and nerolidol, respectively. This bifunctionality can lead to undesired byproducts in synthetic biology applications. To enhance enzyme specificity and create monofunctional linalool synthases, we modified amino acids in the loop between helices C and D of four bifunctional mushroom LNSs. Through these modifications, we successfully shifted the substrate preference of two LNSs (ApLNS from Agrocybe pediades and HsLNS from Hypholoma sublateritium) from FPP towards GPP. Although complete monofunctionality was not achieved, we significantly increased linalool yield by 13 times while minimizing nerolidol production to 1% of the wildtype HsLNS. Docking simulations revealed a substantial reduction in the FPP binding score compared to that of the wildtype. Molecular dynamics simulations suggested that Tyr300 in the apo HsLNS mutant has a greater tendency to adopt an inward orientation. Together with Met77, the inward-facing Tyr300 creates a steric barrier that prevents the longer FPP molecule from entering the substrate binding pocket, thereby greatly reducing its activity towards FPP. This study demonstrates the potential of enzyme engineering to design substrate-specific terpene synthases, which is a challenging task and few successful examples are available. The insights gained can inform future enzyme design efforts, including the development of artificial intelligence models.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Therapeutic gene correction of HBB frameshift CD41-42 (-TCTT) deletion in human hematopoietic stem cells.","authors":"Qianyi Liu, Xinyu Li, Hui Xu, Ying Luo, Lin Cheng, Junbin Liang, Yuelin He, Haiying Liu, Jianpei Fang, Junjiu Huang","doi":"10.1007/s44307-024-00053-5","DOIUrl":"10.1007/s44307-024-00053-5","url":null,"abstract":"<p><p>Β-thalassemia is one of the global health burdens. The CD41-42 (-TCTT) mutation at HBB is the most prevalent pathogenic mutation of β-thalassemia in both China and Southeast Asia. Previous studies focused on repairing the HBB CD41-42 (-TCTT) mutation in β-thalassemia patient-specific induced pluripotent stem cells, which were subsequently differentiated into hematopoietic stem and progenitor cells (HSPCs) for transplantation. In this study, we directly applied the CRISPR/Cas9-based gene editing therapy to correct the HBB CD41-42 (-TCTT) mutation in patient-derived HSPCs. The effective editing induced by Cas9:sgRNA ribonucleoprotein and single-stranded oligodeoxynucleotides (ssODNs) was confirmed in HUDEP-2 cell lines harboring the HBB CD41-42 (-TCTT) mutation. Further correction of heterozygote and homozygote HBB CD41-42 (-TCTT) mutations in patient-derived HSPCs resulted in a 13.4-40.8% increase in the proportion of HBB-expressing (HBB +) cells following erythroid differentiation in vitro. At 16 weeks post-xenotransplantation of the edited HSPCs into coisogenic immunodeficient mice, the reparation efficiency in engrafted bone marrow was 17.21% ± 3.66%. Multiparameter flow cytometric analysis of the engrafted bone marrow showed an increase in the percentage of HBB + cells without impairing the ability of engraftment, self-renewal, and multilineage hematopoietic repopulation of HSPCs. For the safety evaluation, 103 potential off-target sites were predicted by SITE-seq and CRISPOR, with one site displaying significant off-target editing. Since this off-target site is located in the intergenic region, it is presumed to pose minimal risk. Taken together, our study provides critical preclinical data supporting the safety and efficacy of the gene therapy approach for HBB CD41-42 (-TCTT) mutation.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"3 1","pages":"2"},"PeriodicalIF":0.0,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740860/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}