Dandan Zhang, Huang Yu, Xiaoli Yu, Yuchun Yang, Cheng Wang, Kun Wu, Mingyang Niu, Jianguo He, Zhili He, Qingyun Yan
{"title":"Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments.","authors":"Dandan Zhang, Huang Yu, Xiaoli Yu, Yuchun Yang, Cheng Wang, Kun Wu, Mingyang Niu, Jianguo He, Zhili He, Qingyun Yan","doi":"10.1007/s44307-024-00028-6","DOIUrl":"10.1007/s44307-024-00028-6","url":null,"abstract":"<p><p>Microorganisms in eutrophic water play a vital role in nitrogen (N) removal, which contributes significantly to the nutrient cycling and sustainability of eutrophic ecosystems. However, the mechanisms underlying the interactions and adaptation strategies of the N removal microorganisms in eutrophic ecosystems remain unclear. We thus analyzed field sediments collected from a eutrophic freshwater ecosystem, enriched the N removal microorganisms, examined their function and adaptability through amplicon, metagenome and metatranscriptome sequencing. We found that the N removal activities could be affected through potential competition and inhibition among microbial metabolic pathways. High-diversity microbial communities generally increased the abundance and expression of N removal functional genes. Further enrichment experiments showed that the enrichment of N removal microorganisms led to a development of simplified but more stable microbial communities, characterized by similar evolutionary patterns among N removal microorganisms, tighter interactions, and increased adaptability. Notably, the sustained provision of NH<sub>4</sub><sup>+</sup> and NO<sub>2</sub><sup>-</sup> during the enrichment could potentially strengthen the interconnections among denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) processes. Moreover, the identification of shared metabolic traits among denitrification, anammox and DNRA implies important cooperative associations and adaptability of N removal microorganisms. Our findings highlight the microbial interactions affect the adaptive strategies of key microbial taxa involved in N removal.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"2 3","pages":"21"},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740870/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acetylation modification in the regulation of macroautophagy","authors":"Li Huang, Hongwei Guo","doi":"10.1007/s44307-024-00027-7","DOIUrl":"https://doi.org/10.1007/s44307-024-00027-7","url":null,"abstract":"","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":" 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141371301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mianmian Zhu, S. Singer, Le Luo Guan, Guanqun Chen
{"title":"Emerging microalgal feed additives for ruminant production and sustainability","authors":"Mianmian Zhu, S. Singer, Le Luo Guan, Guanqun Chen","doi":"10.1007/s44307-024-00024-w","DOIUrl":"https://doi.org/10.1007/s44307-024-00024-w","url":null,"abstract":"","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":" 582","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140989193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Baoyu Zhang, Xueying Liu, Xiujun Xie, Li Huan, Zhizhuo Shao, Zhiyan Du, Guangce Wang
{"title":"Genetic evidence for functions of Chloroplast CA in Pyropia yezoensis: decreased CCM but increased starch accumulation.","authors":"Baoyu Zhang, Xueying Liu, Xiujun Xie, Li Huan, Zhizhuo Shao, Zhiyan Du, Guangce Wang","doi":"10.1007/s44307-024-00019-7","DOIUrl":"10.1007/s44307-024-00019-7","url":null,"abstract":"<p><p>In response to the changing intertidal environment, intertidal macroalgae have evolved complicated Ci utilization mechanisms. However, our knowledge regarding the CO<sub>2</sub> concentrating mechanism (CCM) of macroalgae is limited. Carbonic anhydrase (CA), a key component of CCM, plays essential roles in many physiological reactions in various organisms. While many genes encode CA in the Pyropia yezoensis genome, the exact function of specific CA in P. yezoensis remains elusive. To explore the particular function of chloroplast CA in intertidal macroalgae, we produced chloroplast-localized βCA1 knockdown mutants of P. yezoensis through RNA interference, and Pyβca1i mutants (hereinafter referred to as ca1i) showed a notable decrease in leaf area and overall biomass, as well as decreased soluble protein and unsaturated fatty acid content under different DIC conditions. However, ca1i mutants showed relatively higher starch content compared to the wild-type. The activity of enzymes involved in the Calvin cycle, photorespiration, Pentose-phosphate pathway, and floridean starch synthesis of P. yezoensis indicated an effective starch accumulation pathway after the interference of βCA1. All results suggest that the decreased activity of PyβCA1 impaired the CCM and development of thalli of P. yezoensis, but stimulated starch accumulation in the cytoplasm through feedback to the photorespiration pathway and pentose phosphate pathway to replenish intermediates for the Calvin cycle. This study is the first to explore the specific function of chloroplast CA in intertidal macroalgae using genomic technology. The results provide valuable insights into the adaption mechanisms of intertidal macroalgae to their environment.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"2 2","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Advanced biotechnologyPub Date : 2024-01-01Epub Date: 2024-05-11DOI: 10.1007/s44307-024-00024-w
Mianmian Zhu, Stacy D Singer, Le Luo Guan, Guanqun Chen
{"title":"Emerging microalgal feed additives for ruminant production and sustainability.","authors":"Mianmian Zhu, Stacy D Singer, Le Luo Guan, Guanqun Chen","doi":"10.1007/s44307-024-00024-w","DOIUrl":"10.1007/s44307-024-00024-w","url":null,"abstract":"<p><p>The global demand for animal-derived foods has led to a substantial expansion in ruminant production, which has raised concerns regarding methane emissions. To address these challenges, microalgal species that are nutritionally-rich and contain bioactive compounds in their biomass have been explored as attractive feed additives for ruminant livestock production. In this review, we discuss the different microalgal species used for this purpose in recent studies, and review the effects of microalgal feed supplements on ruminant growth, performance, health, and product quality, as well as their potential contributions in reducing methane emissions. We also examine the potential complexities of adopting microalgae as feed additives in the ruminant industry.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"2 2","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097968/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140960991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Thermal proteome profiling unveils protein targets of deoxycholic acid in living neuronal cells.","authors":"Hemi Luan, Xuan Li, Wenyong Zhang, Tiangang Luan","doi":"10.1007/s44307-023-00007-3","DOIUrl":"10.1007/s44307-023-00007-3","url":null,"abstract":"<p><p>Bile acids, synthesized in the liver and modified by the gut microbiota, play vital roles in various physiological processes. The dysregulation of bile acids has been extensively documented in patients with neurodegenerative diseases. However, limited attention has been given to the protein targets associated with microbiota-derived bile acids in neurological diseases. To address this knowledge gap, we conducted comprehensive thermal proteomic analyses to elucidate and comprehend the protein targets affected by microbiota-derived bile acids. Our investigation identified sixty-five unique proteins in SH-SY5Y neuronal cells as potential targets of deoxycholic acid (DCA), a primary component of the bile acid pool originating from the gut microbiota. Notably, Nicastrin and Casein kinase 1 epsilon stood out among these proteins. We found that DCA, through its interaction with the Nicastrin subunit of γ-secretase, significantly contributed to the formation of amyloid beta, a key hallmark in the pathology of neurodegenerative diseases. In summary, our findings provide crucial insights into the intricate interplay between microbiota-derived bile acids and the pathogenesis of neurodegenerative diseases, thereby shedding light on potential therapeutic targets for neurodegenerative diseases.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"1 4","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2023-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727579/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Principles, challenges, and advances in ribosome profiling: from bulk to low-input and single-cell analysis.","authors":"Qiuyi Wang, Yuanhui Mao","doi":"10.1007/s44307-023-00006-4","DOIUrl":"10.1007/s44307-023-00006-4","url":null,"abstract":"<p><p>Ribosome profiling has revolutionized our understanding of gene expression regulation by providing a snapshot of global translation in vivo. This powerful technique enables the investigation of the dynamics of translation initiation, elongation, and termination, and has provided insights into the regulation of protein synthesis under various conditions. Despite its widespread adoption, challenges persist in obtaining high-quality ribosome profiling data. In this review, we discuss the fundamental principles of ribosome profiling and related methodologies, including selective ribosome profiling and translation complex profiling. We also delve into quality control to assess the reliability of ribosome profiling datasets, and the efforts to improve data quality by modifying the standard procedures. Additionally, we highlight recent advancements in ribosome profiling that enable the transition from bulk to low-input and single-cell applications. Single-cell ribosome profiling has emerged as a crucial tool for exploring translation heterogeneity within specific cell populations. However, the challenges of capturing mRNAs efficiently and the sparse nature of footprint reads in single-cell ribosome profiling present ongoing obstacles. The need to refine ribosome profiling techniques remains, especially when used at the single-cell level.</p>","PeriodicalId":519913,"journal":{"name":"Advanced biotechnology","volume":"1 4","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11727582/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143070712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}