Chinese Journal of Polymer Science最新文献

筛选
英文 中文
Crosslinked Natural Rubber and Styrene Butadiene Rubber Blends/Carbon Black Composites for Self-healable and Energy-saved Applications 用于自愈合和节能应用的交联天然橡胶和丁苯橡胶混合物/炭黑复合材料
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-27 DOI: 10.1007/s10118-024-3208-3
Ariya Julbust, Kwanchai Buaksuntear, Supitta Suethao, Phillip Kohl, Youli Li, Wirasak Smitthipong
{"title":"Crosslinked Natural Rubber and Styrene Butadiene Rubber Blends/Carbon Black Composites for Self-healable and Energy-saved Applications","authors":"Ariya Julbust,&nbsp;Kwanchai Buaksuntear,&nbsp;Supitta Suethao,&nbsp;Phillip Kohl,&nbsp;Youli Li,&nbsp;Wirasak Smitthipong","doi":"10.1007/s10118-024-3208-3","DOIUrl":"10.1007/s10118-024-3208-3","url":null,"abstract":"<div><p>Crosslinking natural rubber (NR) and styrene butadiene rubber (SBR) composites with carbon black (CB) have been utilized in the tire tread industry. A sulfur-based lightly crosslinker can potentially enhance the self-healing capabilities of rubber. Moreover, the rubber composites were studied for non-covalent interactions between the benzene rings of SBR and CB. In this research, rubber samples were prepared, and their structure was investigated using Fourier transform infrared (FTIR), and Raman spectroscopy. The red shift in Raman spectroscopy confirmed non-covalent interaction or hydrophobic interaction between SBR and CB in NR/SBR composites exposed to CB due to environmental change. The differential scanning calorimetry (DSC) thermograms showed that NR and SBR were incompatible. Additionally, the mechanical properties of these rubber blends were enhanced as the proportion of NR increased. The maximum self-healing performance reached 40% for the formulation containing 25 phr NR and 75 phr SBR, which also saved energy with low chain end movements. Therefore, these composites could be utilized as a semi-empirical model for studying crosslinked rubber blends, specifically in the rubber tire industry.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1835 - 1844"},"PeriodicalIF":4.1,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue: Dynamic Polymer Networks 特刊:动态聚合物网络
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-25 DOI: 10.1007/s10118-024-3224-3
Jun-Qi Sun, Zhi-Bo Li, Tao Xie
{"title":"Special Issue: Dynamic Polymer Networks","authors":"Jun-Qi Sun,&nbsp;Zhi-Bo Li,&nbsp;Tao Xie","doi":"10.1007/s10118-024-3224-3","DOIUrl":"10.1007/s10118-024-3224-3","url":null,"abstract":"","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 10","pages":"1401 - 1402"},"PeriodicalIF":4.1,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142413785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulation of Mechanical Properties of Conductive Polymer Composites 导电聚合物复合材料机械性能的调节
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-18 DOI: 10.1007/s10118-024-3203-8
Ling Zhu, Shuai Chen, Meng Zhou, Si-Ying An, Li-Shan Liang, You-Liang Shen, Ze-Xu Xue
{"title":"Regulation of Mechanical Properties of Conductive Polymer Composites","authors":"Ling Zhu,&nbsp;Shuai Chen,&nbsp;Meng Zhou,&nbsp;Si-Ying An,&nbsp;Li-Shan Liang,&nbsp;You-Liang Shen,&nbsp;Ze-Xu Xue","doi":"10.1007/s10118-024-3203-8","DOIUrl":"10.1007/s10118-024-3203-8","url":null,"abstract":"<div><p>Conductive polymer composites (CPCs) are widely used in the field of organic electronics as the material basis of high-performance devices, due to their obvious advantages including electrical conductivity, lightness, processability and so on. Research on CPCs has focused on the enhancement of their electrical features and the exploration of their application prospects from conventional fields to heated emerging areas like flexible, stretchable, wearable, biological and biomedical electronics, where their mechanical properties are quite critical to determine their practical device performances. Also, a main challenge to ensure their safety and reliability is on the synergistic enhancement of their electrical behavior and mechanical properties. Herein, we systematically reviews the research progress of CPCs with different conductive fillers (metals and their oxides, carbon-based materials, intrinsically conductive polymers, MXenes, <i>etc.</i>) relying on rich material forms (hydrogel, aerogel, fiber, film, elastomer, <i>etc.</i>) in terms of mechanical property regulation strategies, mainly relying on optimized composite material systems and processing techniques. A summary and prospective overview of current issues and future developments in this field also has been presented.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1855 - 1880"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Simple and Efficient Algorithm to Identify the Chirality of Polymer Knots Based on the Alexander Polynomial
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-18 DOI: 10.1007/s10118-024-3194-5
Qi-Yuan Qiu, Yong-Jian Zhu, Zhong-Tao Wu, Liang Dai
{"title":"A Simple and Efficient Algorithm to Identify the Chirality of Polymer Knots Based on the Alexander Polynomial","authors":"Qi-Yuan Qiu,&nbsp;Yong-Jian Zhu,&nbsp;Zhong-Tao Wu,&nbsp;Liang Dai","doi":"10.1007/s10118-024-3194-5","DOIUrl":"10.1007/s10118-024-3194-5","url":null,"abstract":"<div><p>Recent experimental observations of knotting in DNA and proteins have stimulated the simulation studies of polymer knots. Simulation studies usually identify knots in polymer conformations through the calculation of the Alexander polynomial. However, the Alexander polynomial cannot directly discriminate knot chirality, while knot chirality plays important roles in many physical, chemical, and biological properties. In this work, we discover a new relationship for knot chirality and accordingly, develop a new algorithm to extend the applicability of the Alexander polynomial to the identification of knot chirality. Our algorithm adds an extra step in the ordinary calculation of the Alexander polynomial. This extra step only slightly increases the computational cost. The correctness of our algorithm has been proved mathematically by us. The implication of this algorithm in physical research has been demonstrated by our studies of the tube model for polymer knots. Without this algorithm, we would be unable to obtain the tubes for polymer knots.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"2030 - 2037"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142778166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative Study of Intrachain versus Interchain Cross-linking on the Mechanical, Thermal and Dielectric Properties of Low-k Polyimide 链内交联与链间交联对低 k 值聚酰亚胺机械特性、热特性和介电特性的比较研究
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-18 DOI: 10.1007/s10118-024-3186-5
Wan-Jing Zhao, Yi-Zhang Tong, Pei-Pei Zeng, Yang-Sheng Zhou, Xian-Wu Cao, Wei Wu
{"title":"Comparative Study of Intrachain versus Interchain Cross-linking on the Mechanical, Thermal and Dielectric Properties of Low-k Polyimide","authors":"Wan-Jing Zhao,&nbsp;Yi-Zhang Tong,&nbsp;Pei-Pei Zeng,&nbsp;Yang-Sheng Zhou,&nbsp;Xian-Wu Cao,&nbsp;Wei Wu","doi":"10.1007/s10118-024-3186-5","DOIUrl":"10.1007/s10118-024-3186-5","url":null,"abstract":"<div><p>Polyimide (PI) is widely used in high-frequency communication technology due to its exceptional comprehensive properties. However, traditional PI has a relatively elevated dielectric constant and dielectric loss. Herein, the different cross-linked structures were introduced in PI matrix and conducted a detailed discussion on the influence of cross-linking agent content and cross-linking structure type on the overall performance of PI films. In comparison to the dielectric constant of 2.9 of neat PI, PI with an interchain cross-linking structure containing 2 wt% 1,3,5-tris(4-aminophenyl)benzene (TAPB) (interchain-PI-2) exhibited the reduced dielectric constant of 2.55 at 1 MHz. The PI films with intrachain cross-linking structure containing 2 wt% TAPB (intrachain-PI-2) exhibited the lowest dielectric constant of 2.35 and the minimum dielectric loss of 0.0075 at 1 MHz. It was due to the more entanglement junctions of intrachain-PI resulting in decreased carrier transport. The thermal expansion coefficients of both interchain-PI and intrachain-PI films were effectively reduced. Moreover, in contrast to interchain-PI films, the intrachain-PI films maintained colorlessness and transparency as the cross-linking agent content increased. This work compared the effects of two different cross-linked structures on the performance of PI films and provided a feasible way to obtain low-<i>k</i> PI films with excellent comprehensive performance for 5G applications.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1824 - 1834"},"PeriodicalIF":4.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142600699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries 用于高性能锂离子电池的 PI 和预氧化 PAN 纳米纤维随机交织的坚固复合隔膜
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI: 10.1007/s10118-024-3180-y
Ying Li, Chen Pan, Feng Gan, Zhi-Xun Lin, Jin-Chao Yu, Zhen-Zhen Wei, Yan Zhao
{"title":"Robust Composite Separator Randomly Interwoven by PI and Pre-oxidized PAN Nanofibers for High Performance Lithium-ion Batteries","authors":"Ying Li,&nbsp;Chen Pan,&nbsp;Feng Gan,&nbsp;Zhi-Xun Lin,&nbsp;Jin-Chao Yu,&nbsp;Zhen-Zhen Wei,&nbsp;Yan Zhao","doi":"10.1007/s10118-024-3180-y","DOIUrl":"10.1007/s10118-024-3180-y","url":null,"abstract":"<div><p>Electrospun nanofibrous separators, despite lacking superior mechanical strength, have gained widespread attention with high porosity and facile processing. Herein, utilizing the fact that thermal imidization temperature of poly(amic acid) (PAA) into polyimide (PI) coincides with the pre-oxidation temperature of polyacrylonitrile (PAN) into carbon fiber, we proposed a new cross-electrospinning strategy to obtain a composite nanofibrous separator (PI/oPAN) randomly interwoven by PI and pre-oxidized PAN (oPAN) nanofibers, <i>via</i> synchronously electrospinning the PAA and PAN onto the same collector and then heat-treating for 2 h at 300 °C. The resultant PI/oPAN separator was able to preserve high porosity (71.7%), electrolyte wettability and thermal stability of PI nanofibrous membrane, and surprisingly exhibited high mechanical strength, being 3 times of PI, which mainly because of the numerous adhesion points generated by the melting of PAN in the pre-oxidation process. Meanwhile, the polar groups of oPAN and 3D fibrous network enhanced the PI/oPAN separator’s ionic conductivity and Li<sup>+</sup> transference number, rendering the corresponding cell with more stable cycling performance than cells assembled with pure PI, PAN or commercial PP separator. Therefore, this work might provide a new avenue for the ongoing design and further development of LIB separators capable of high safety and high performance.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1768 - 1779"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265640","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Performance Microwave Absorption Material Based on Metal-Backboned Polymer 基于金属骨架聚合物的高性能微波吸收材料
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI: 10.1007/s10118-024-3181-x
Jia-Ning Xu, Kai-Wen Zeng, Yi-Feng Zhang, Yi-Bei Yang, Zi-Wei Liu, Yue Liu, Jia-Jia Wang, Kai-Lin Zhang, Yan-Ru-Zhen Wu, Hao Sun, Hui-Sheng Peng
{"title":"High Performance Microwave Absorption Material Based on Metal-Backboned Polymer","authors":"Jia-Ning Xu,&nbsp;Kai-Wen Zeng,&nbsp;Yi-Feng Zhang,&nbsp;Yi-Bei Yang,&nbsp;Zi-Wei Liu,&nbsp;Yue Liu,&nbsp;Jia-Jia Wang,&nbsp;Kai-Lin Zhang,&nbsp;Yan-Ru-Zhen Wu,&nbsp;Hao Sun,&nbsp;Hui-Sheng Peng","doi":"10.1007/s10118-024-3181-x","DOIUrl":"10.1007/s10118-024-3181-x","url":null,"abstract":"<div><p>Metal-backboned polymers with anisotropy microstructures are promising for conductive, optoelectronic, and magnetic functional materials. However, the structure-property relationships governing the interplay between the chemical structure and electromagnetic property of the metal-backboned polymer have been rarely investigated. Here we report a carbon/nickel hybrid from metal-backboned polymer to serve as electromagnetic wave-absorbing materials, which exhibit high microwave absorption capacity and tunable absorption band. The presence of nickel backbones promote the generation of heterogeneous interfaces with carbon during calcination, thereby enhancing the wave-absorbing capacity of the carbon/nickel hybrid. The C/Ni hybrids show a minimal reflection loss of −49.1 dB at 13.04 GHz, and its frequency of the absorption band can be adjusted by controlling the thickness of the absorption layer.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 12","pages":"1881 - 1887"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Special Issue on Charged Polymers 带电聚合物特刊
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI: 10.1007/s10118-024-3214-5
Peng-Fei Zhang, Jiang Zhao, An-Chang Shi
{"title":"Special Issue on Charged Polymers","authors":"Peng-Fei Zhang,&nbsp;Jiang Zhao,&nbsp;An-Chang Shi","doi":"10.1007/s10118-024-3214-5","DOIUrl":"10.1007/s10118-024-3214-5","url":null,"abstract":"","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 9","pages":"1253 - 1253"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications 氢键交联超分子聚合物材料:从侧链氢键的设计演变到应用
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI: 10.1007/s10118-024-3204-7
Qian Zhang, Zi-Yang Xu, Wen-Guang Liu
{"title":"Hydrogen-Bonding Crosslinked Supramolecular Polymer Materials: From Design Evolution of Side-Chain Hydrogen-Bonding to Applications","authors":"Qian Zhang,&nbsp;Zi-Yang Xu,&nbsp;Wen-Guang Liu","doi":"10.1007/s10118-024-3204-7","DOIUrl":"10.1007/s10118-024-3204-7","url":null,"abstract":"<div><p>Hydrogen bonds (H-bonds) are the most essential non-covalent interactions in nature, playing a crucial role in stabilizing the secondary structures of proteins. Taking inspiration from nature, researchers have developed several multiple H-bonds crosslinked supramolecular polymer materials through the incorporation of H-bond side-chain units into the polymer chains. N-acryloyl glycinamide (NAGA) is a monomer with dual amides in the side group, which facilitates the formation of multiple dense intermolecular H-bonds within poly(<i>N</i>-acryloyl glycinamide) (PNAGA), thereby exhibiting diverse properties dependent on concentration and meeting various requirements across different applications. Moreover, numerous attempts have been undertaken to synthesize diverse NAGA-derived units through meticulous chemical structure regulation and fabricate corresponding H-bonding crosslinked supramolecular polymer materials. Despite this, the systematic clarification of the impact of chemical structures of side moieties on intermolecular associations and material performances remains lacking. The present review will focus on the design principle for synthesizing NAGA-derived H-bond side-chain units and provide an overview of the recent advancements in multiple H-bonds crosslinked PNAGA-derived supramolecular polymer materials, which can be categorized into three groups based on the chemical structure of H-bonds units: (1) monomers with solely cooperative H-bonds; (2) monomers with synergistic H-bonds and other physical interactions; and (3) diol chain extenders with cooperative H-bonds. The significance of subtle structural variations in these NAGA-derived units, enabling the fabrication of hydrogen-bonded supramolecular polymer materials with significantly diverse performances, will be emphasized. Moreover, the extensive applications of multiple H-bonds crosslinked supramolecular polymer materials will be elucidated.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1619 - 1641"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane 基于机械强度梯状聚苯基硅倍半氧烷和低聚苯基呋喃硅氧烷的发光复合薄膜
IF 4.1 2区 化学
Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI: 10.1007/s10118-024-3190-9
E. E. Kim, T. O. Ershova, A. S. Belova, D. A. Khanin, E. V. Bashkova, G. G. Nikiforova, Yu. N. Kononevich, A. A. Anisimov, O. I. Shchegolikhina, A. M. Muzafarov
{"title":"Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane","authors":"E. E. Kim,&nbsp;T. O. Ershova,&nbsp;A. S. Belova,&nbsp;D. A. Khanin,&nbsp;E. V. Bashkova,&nbsp;G. G. Nikiforova,&nbsp;Yu. N. Kononevich,&nbsp;A. A. Anisimov,&nbsp;O. I. Shchegolikhina,&nbsp;A. M. Muzafarov","doi":"10.1007/s10118-024-3190-9","DOIUrl":"10.1007/s10118-024-3190-9","url":null,"abstract":"<div><p>Nowadays organosilicon luminescent materials are of increasing interest due to the variety of their synthetic or modification techniques and application fields. Ladder polyphenylsilsesquioxanes (L-PPSQ) are a unique class of organosilicon polymers, which can be ideal matrices for the luminescent composites due to their high thermal stability, optical transparency and mechanical strength. In this work, new mechanically strong, heat-resistant, transparent and sensitive to ammonia vapor luminescent composite films based on L-PPSQ have been obtained. As the source of Europium ions oligophenyleuropiumsiloxane was used, demonstrating perfect compatibility to the matrix due to the similar nature. To improve luminescent properties of the films, new organosilicon ligands were introduced into the composites and their influence on the properties of the materials was studied. Valuable properties of described composites may allow their further application as multifunctional coatings.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1793 - 1801"},"PeriodicalIF":4.1,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142265641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信