Jun-Shan Si, Nan Wu, Ming-Jie Wen, Dong-Ping Chen, Yong-Lyu He, Jian-Wei Zhang, Ke Duan
{"title":"交联环氧树脂的反应性机器学习力场","authors":"Jun-Shan Si, Nan Wu, Ming-Jie Wen, Dong-Ping Chen, Yong-Lyu He, Jian-Wei Zhang, Ke Duan","doi":"10.1007/s10118-025-3389-4","DOIUrl":null,"url":null,"abstract":"<div><p>Large-scale molecular dynamics (MD) simulations of crosslinked epoxy with quantum-level accuracy while capturing complex reactivity is a compelling yet unrealized challenge. In this work, through the construction of a chemical-environment-directing dataset, a reactive machine learning force field that accurately captures both reactive events and thermos-mechanical properties is developed. The force field achieves energy and force root-mean-square errors of 1.3 meV/atom and 159 meV/Å, respectively, and operates approximately 1200 times faster than ab initio molecular dynamics. MD simulations demonstrate excellent predictive capabilities across multiple critical thermos-mechanical properties (radial distribution function, density, and elastic modulus), with results being well consistent with experimental values. In particular, the force field can provide accurate prediction of the bond dissociation energies for typical bonds with a mean absolute error of 7.8 kcal/mol (<8%), which enables the simulation of tensile-induced failure caused by chemical bond breaking. Our work demonstrates the capability of the machine learning force field to handle the extraordinary complexity of crosslinked epoxy systems, providing a valuable blueprint for future development of more generalized reactive force fields applicable to most polymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 10","pages":"1761 - 1773"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reactive Machine Learning Force Field for Crosslinked Epoxy\",\"authors\":\"Jun-Shan Si, Nan Wu, Ming-Jie Wen, Dong-Ping Chen, Yong-Lyu He, Jian-Wei Zhang, Ke Duan\",\"doi\":\"10.1007/s10118-025-3389-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Large-scale molecular dynamics (MD) simulations of crosslinked epoxy with quantum-level accuracy while capturing complex reactivity is a compelling yet unrealized challenge. In this work, through the construction of a chemical-environment-directing dataset, a reactive machine learning force field that accurately captures both reactive events and thermos-mechanical properties is developed. The force field achieves energy and force root-mean-square errors of 1.3 meV/atom and 159 meV/Å, respectively, and operates approximately 1200 times faster than ab initio molecular dynamics. MD simulations demonstrate excellent predictive capabilities across multiple critical thermos-mechanical properties (radial distribution function, density, and elastic modulus), with results being well consistent with experimental values. In particular, the force field can provide accurate prediction of the bond dissociation energies for typical bonds with a mean absolute error of 7.8 kcal/mol (<8%), which enables the simulation of tensile-induced failure caused by chemical bond breaking. Our work demonstrates the capability of the machine learning force field to handle the extraordinary complexity of crosslinked epoxy systems, providing a valuable blueprint for future development of more generalized reactive force fields applicable to most polymers.</p></div>\",\"PeriodicalId\":517,\"journal\":{\"name\":\"Chinese Journal of Polymer Science\",\"volume\":\"43 10\",\"pages\":\"1761 - 1773\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10118-025-3389-4\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-025-3389-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Reactive Machine Learning Force Field for Crosslinked Epoxy
Large-scale molecular dynamics (MD) simulations of crosslinked epoxy with quantum-level accuracy while capturing complex reactivity is a compelling yet unrealized challenge. In this work, through the construction of a chemical-environment-directing dataset, a reactive machine learning force field that accurately captures both reactive events and thermos-mechanical properties is developed. The force field achieves energy and force root-mean-square errors of 1.3 meV/atom and 159 meV/Å, respectively, and operates approximately 1200 times faster than ab initio molecular dynamics. MD simulations demonstrate excellent predictive capabilities across multiple critical thermos-mechanical properties (radial distribution function, density, and elastic modulus), with results being well consistent with experimental values. In particular, the force field can provide accurate prediction of the bond dissociation energies for typical bonds with a mean absolute error of 7.8 kcal/mol (<8%), which enables the simulation of tensile-induced failure caused by chemical bond breaking. Our work demonstrates the capability of the machine learning force field to handle the extraordinary complexity of crosslinked epoxy systems, providing a valuable blueprint for future development of more generalized reactive force fields applicable to most polymers.
期刊介绍:
Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985.
CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.