Chinese Journal of Polymer Science最新文献

筛选
英文 中文
A Biosynthesis Method of Color-tunable Fluorescent Cellulose via In situ Polymerization Using Microbial Systems 微生物原位聚合法制备可调色荧光纤维素的研究
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-10 DOI: 10.1007/s10118-025-3376-9
Hao-Jie Zhang, Yu-Jie Chang, Hai-Ying Chen, Wen-Xiao Du, Da-Peng Yang, Lei Han
{"title":"A Biosynthesis Method of Color-tunable Fluorescent Cellulose via In situ Polymerization Using Microbial Systems","authors":"Hao-Jie Zhang,&nbsp;Yu-Jie Chang,&nbsp;Hai-Ying Chen,&nbsp;Wen-Xiao Du,&nbsp;Da-Peng Yang,&nbsp;Lei Han","doi":"10.1007/s10118-025-3376-9","DOIUrl":"10.1007/s10118-025-3376-9","url":null,"abstract":"<div><p>In recent years, cellulose-based fluorescent polymers have received considerable attention. However, conventional modification methods face challenges such as insolubility in most solvents, fluorescence instability, and environmental risks. In this study, a novel biosynthesis strategy was developed to fabricate fluorescent cellulose by adding fluorescent glucose derivatives to a bacterial fermentation broth. The metabolic activity of bacteria is utilized to achieve <i>in situ</i> polymerization of glucose and its derivatives during the synthesis of bacterial cellulose. Owing to the structural similarity between triphenylamine-modified glucose (TPA-GlcN) and glucose monomers, the TPA-GlcN were efficiently assimilated by the bacterial cells and incorporated into the cellulose matrix, resulting in a uniform distribution of fluorescence. The fluorescence color and intensity of the obtained cellulose could be adjusted by varying the amount of the fluorescent glucose derivatives. Compared to the fluorescent cellulose synthesized through physical dyeing, the fluorescence of the products obtained by in situ polymerization showed higher intensity and stability. Furthermore, fluorescent bacterial cellulose can be hydrolyzed into nanocellulose-based ink, which demonstrates exceptional anti-counterfeiting capabilities under UV light. This biosynthesis method not only overcomes the limitations of traditional modification techniques but also highlights the potential of microbial systems as platforms for synthesizing functional polymers.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 8","pages":"1284 - 1292"},"PeriodicalIF":4.0,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145164486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pendant Y-series Acceptors with Well-controlled Morphology Enabled High Performance and Stability All-polymer Solar Cells 具有良好控制形态的垂坠y系列受体,使全聚合物太阳能电池具有高性能和稳定性
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-10 DOI: 10.1007/s10118-025-3367-x
Hao-Yong Shi, Lu Xing, Ming-Xia Chen, Zhi-Yi Chen, Ming-Wei Deng, Lin-Yong Xu, Xiao-Hei Wu, Xin-Rong Yang, Yi-Ming Shao, Elizaveta D. Papkovskaya, Yuriy Luponosov, Rui Sun, Jie Min
{"title":"Pendant Y-series Acceptors with Well-controlled Morphology Enabled High Performance and Stability All-polymer Solar Cells","authors":"Hao-Yong Shi,&nbsp;Lu Xing,&nbsp;Ming-Xia Chen,&nbsp;Zhi-Yi Chen,&nbsp;Ming-Wei Deng,&nbsp;Lin-Yong Xu,&nbsp;Xiao-Hei Wu,&nbsp;Xin-Rong Yang,&nbsp;Yi-Ming Shao,&nbsp;Elizaveta D. Papkovskaya,&nbsp;Yuriy Luponosov,&nbsp;Rui Sun,&nbsp;Jie Min","doi":"10.1007/s10118-025-3367-x","DOIUrl":"10.1007/s10118-025-3367-x","url":null,"abstract":"<div><p>Polymer acceptor configuration and aggregation behavior are critical in determining the photovoltaic performance of all-polymer solar cells (all-PSCs). Effectively manipulating polymer self-aggregation through structural design to optimize the blend morphology remains challenging. Herein, we present a simple yet effective design strategy to modulate the aggregation behavior of the Y-series-based polymer acceptor PY-V-<i>γ</i> by introducing a pendant-fluorinated Y-series acceptor (Y2F-ET) into the main-conjugated backbone. Two random copolymer acceptors (PY-EY-5 and PY-EY-20) were synthesized with varying molar fractions of Y2F-ET pendant monomers. Our findings revealed that both the solution-phase and solid-state aggregation behaviors were progressively suppressed as the Y2F-ET content increased. Compared to the highly self-aggregating PY-V-<i>γ</i>-based all-PSCs, the more amorphous PY-EY-5 enabled devices to achieve an increased device efficiency from 17.31% to 18.45%, which is attributed to the slightly smaller polymer phase-separation domain sizes and reduced molecular aggregation in the PM6:PY-EY-5 blend. Moreover, the finely tuned blend morphology exhibited superior thermal stability, underscoring the significant advantages of the Y-series pendant random copolymerization approach.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1516 - 1526"},"PeriodicalIF":4.0,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tensile Deformation Mechanism of Glycerol Plasticized Poly(vinyl alcohol) Film as Elucidated by In situ Synchrotron Radiation X-ray Scattering: the Critical Role of Hydrolysis 原位同步辐射x射线散射研究甘油增塑型聚乙烯醇薄膜的拉伸变形机理:水解的关键作用
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-08 DOI: 10.1007/s10118-025-3381-z
Zi-Shuo Wu, Jia-Ying Deng, Wei Chen
{"title":"Tensile Deformation Mechanism of Glycerol Plasticized Poly(vinyl alcohol) Film as Elucidated by In situ Synchrotron Radiation X-ray Scattering: the Critical Role of Hydrolysis","authors":"Zi-Shuo Wu,&nbsp;Jia-Ying Deng,&nbsp;Wei Chen","doi":"10.1007/s10118-025-3381-z","DOIUrl":"10.1007/s10118-025-3381-z","url":null,"abstract":"<div><p>The deformation mechanism of glycerol plasticized poly(vinyl alcohol) (PVA) with different hydrolyses (88%, 92%, 98%) at elevated temperatures (60–100 °C) was elucidated by <i>in situ</i> synchrotron radiation X-ray scattering. The vinyl acetate (VAc) in PVA acts as a non-crystalline chain defect, which significantly influences the plastic deformation and stretching-induced crystallization behavior of PVA. The key microstructural parameters of PVA during deformation, such as crystallinity (<i>χ</i><sub>c</sub>), lateral crystallite size (<i>L</i>), and long period (<i>l</i>), in combination with the stress-strain curves, were obtained. The experimental results show that the deformation process of the plasticized PVA film present a three-stage evolution: (i) a plastic deformation zone. The plastic deformation of the crystallite occurs as evidenced by the apparent decrease in crystallinity and lamellar reorientation induced by stretching; (ii) the stress softening zone. The decreasing trend of crystallinity becomes slow, and the long period becomes smaller, which indicates that PVA crystallization is induced by stretching; and (iii) the strain-hardening zone. There is a synergistic effect between the crystallite destruction and formation. Further research reveals that a high temperature and low degree of alcoholysis favor the stretching-induced crystallization of PVA, while the system with a high degree of alcoholysis shows significant characteristics of preferred crystal growth.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1671 - 1680"},"PeriodicalIF":4.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Super Tough, Highly Ionically Conductive, Self-healing Elastomers with Dynamic Metal Coordination Crosslinks for Flexible Sensors 柔性传感器用具有动态金属配位交联的超强韧性、高离子导电性、自愈弹性体
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-08 DOI: 10.1007/s10118-025-3377-8
Ming-Jun Tang, Jian-Hui Yan, Yu-Jun Liu, Yi Wei, Yu-Xi Li, Xu-Ming Xie
{"title":"Super Tough, Highly Ionically Conductive, Self-healing Elastomers with Dynamic Metal Coordination Crosslinks for Flexible Sensors","authors":"Ming-Jun Tang,&nbsp;Jian-Hui Yan,&nbsp;Yu-Jun Liu,&nbsp;Yi Wei,&nbsp;Yu-Xi Li,&nbsp;Xu-Ming Xie","doi":"10.1007/s10118-025-3377-8","DOIUrl":"10.1007/s10118-025-3377-8","url":null,"abstract":"<div><p>Integrated conductive elastomers with excellent mechanical performance, stable high conductivity, self-healing capabilities, and high transparency are critical for advancing wearable devices. Nevertheless, achieving an optimal balance among these properties remains a significant challenge. Herein, through in situ free-radical copolymerization of 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate (TEEA) and vinylimidazole (VI) in the presence of polyethylene glycol (PEG; <i>M</i><sub>n</sub>=400), tough P(TEEA-<i>co</i>-VI)/PEG elastomers with multiple functionalities were prepared, in which P(TEEA-<i>co</i>-VI) was dynamically cross-linked by imidazole-Zn<sup>2+</sup> metal coordination crosslinks, and physically blended with PEG as polymer electrolyte to form a homogeneous mixture. Notably, Zn<sup>2+</sup> has a negligible impact on the polymerization process, allowing for the in situ formation of numerous imidazole-Zn<sup>2+</sup> metal coordination crosslinks, which can effectively dissipate energy upon stretching to largely reinforce the elastomers. The obtained P(TEEA-<i>co</i>-VI)/PEG elastomers exhibited a high toughness of 10.0 MJ·m<sup>-3</sup> with a high tensile strength of 3.3 MPa and a large elongation at break of 645%, along with outstanding self-healing capabilities due to the dynamic coordination crosslinks. Moreover, because of the miscibility of PEG with PTEEA copolymer matrix, and Li<sup>+</sup> can form weak coordination interactions with the ethoxy (EO) units in PEG and PTEEA, acting as a bridge to integrate PEG into the elastomer network. The resulted P(TEEA-<i>co</i>-VI)/PEG elastomers showed high transparency (92%) and stable high conductivity of 1.09×10<sup>-4</sup> S·cm<sup>-1</sup>. In summary, the obtained elastomers exhibited a well-balanced combination of high toughness, high ionic conductivity, excellent self-healing capabilities, and high transparency, making them promising for applications in flexible strain sensors.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1565 - 1575"},"PeriodicalIF":4.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sustainable Flame-retardant and Tough Poly(vinyl alcohol) Films with Phytic Acid and Biochar: A Simple and Effective Approach 植酸和生物炭可持续阻燃和坚韧聚乙烯醇薄膜:一种简单而有效的方法
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-08 DOI: 10.1007/s10118-025-3365-z
Chang-Fa Zhu, Jia-Xi Zhang, Shao-Ping Qian, Tong-Hui Pan
{"title":"Sustainable Flame-retardant and Tough Poly(vinyl alcohol) Films with Phytic Acid and Biochar: A Simple and Effective Approach","authors":"Chang-Fa Zhu,&nbsp;Jia-Xi Zhang,&nbsp;Shao-Ping Qian,&nbsp;Tong-Hui Pan","doi":"10.1007/s10118-025-3365-z","DOIUrl":"10.1007/s10118-025-3365-z","url":null,"abstract":"<div><p>Poly(vinyl alcohol) (PVA) is a biodegradable and environmentally friendly material known for its gas barrier characteristics and solvent resistance. However, its flammability and water sensitivity limit its application in specialized fields. In this study, phytic acid (PA) was introduced as a halogen-free flame retardant and biochar (BC) was introduced as a reinforcement to achieve both flame resistance and mechanical robustness. We thoroughly investigated the effects of BC particle sizes (100–3000 mesh) and addition amounts (0 wt%–10 wt%), as well as PA addition amounts (0 wt%–15 wt%), on the properties of PVA composite films. Notably, the PA10/1000BC5 composite containing 10 wt% PA and 5 wt% 1000 mesh BC exhibited optimal properties. The limiting oxygen index increased to 39.2%, and the UL-94 test achieved a V-0 rating. Additionally, the PA10/1000BC5 composite film demonstrated significantly enhanced water resistance, with a swelling ratio reaching 800% without dissolving, unlike that of the control PVA. The water contact angle was 70°, indicating that hydrophilic properties remained essentially unaffected. Most importantly, the tensile modulus and elongation at break were 213 MPa and 281.7%, respectively, nearly double those of the PVA/PA composite film. This study presents an efficient and straightforward method for preparing PVA composite films that are flame-retardant, tough, and waterresistant, expanding their potential applications in various fields.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 8","pages":"1333 - 1345"},"PeriodicalIF":4.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145163151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Compatibilizer-aided Fabrication of a ‘High-entropy Polymer Blend’ 增容剂辅助制备“高熵共混聚合物”
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-08 DOI: 10.1007/s10118-025-3394-7
Jia-Nan Du, Wen-Kang Wei, Shi-De Lu, Dong Wang
{"title":"Compatibilizer-aided Fabrication of a ‘High-entropy Polymer Blend’","authors":"Jia-Nan Du,&nbsp;Wen-Kang Wei,&nbsp;Shi-De Lu,&nbsp;Dong Wang","doi":"10.1007/s10118-025-3394-7","DOIUrl":"10.1007/s10118-025-3394-7","url":null,"abstract":"<div><p>High-entropy polymer blends composed of polypropylene (PP), polystyrene (PS), polyamide 6 (PA6), poly(lactic acid) (PLA), and styrene-ethylene-butylene-styrene (SEBS) were successfully fabricated using maleic anhydride-grafted SEBS (SEBS-<i>g</i>-MAH) as a compatibilizer. Dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and mechanical testing demonstrated that SEBS-<i>g</i>-MAH significantly enhanced the compatibility between the polar (PA6, PLA) and nonpolar (PP, PS, SEBS) components. The compatibilizer effectively refined the microstructure, substantially reduced the domain sizes, and blurred the phase boundaries, indicating enhanced interfacial interactions among all the components. The optimal compatibilizer content (15 wt%) notably increased tensile ductility (elongation at break from 5.0% to 23.7%) while maintaining balanced crystallization behavior, despite slightly decreasing modulus. This work not only demonstrates the broad applicability of high-entropy polymer blends as a sustainable strategy for converting complex, unsorted plastic waste into high-performance value-added materials that significantly contribute to plastic upcycling efforts, but also highlights intriguing physical phenomena emerging from such complex polymer systems.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1592 - 1601"},"PeriodicalIF":4.0,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multicomponent Polymerization of Diacetylarenes, Dialkynones, and NH4OAc for In situ Construction of Functional Conjugated Poly(triarylpyridine)s 二乙酰芳烃、二炔酮和NH4OAc多组分聚合原位构建功能共轭聚三芳基吡啶的研究
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-03 DOI: 10.1007/s10118-025-3362-2
Shi-Han Yu, Lu Wang, Meng-Chao Zhang, Hong-Kun Li
{"title":"Multicomponent Polymerization of Diacetylarenes, Dialkynones, and NH4OAc for In situ Construction of Functional Conjugated Poly(triarylpyridine)s","authors":"Shi-Han Yu,&nbsp;Lu Wang,&nbsp;Meng-Chao Zhang,&nbsp;Hong-Kun Li","doi":"10.1007/s10118-025-3362-2","DOIUrl":"10.1007/s10118-025-3362-2","url":null,"abstract":"<div><p>Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable. In this work, a multicomponent polymerization of acetylarenes, alkynones and ammonium acetate for <i>in situ</i> construction of conjugated poly(triarylpyridine)s was developed. The polymerization reactions of diacetylarenes, aromatic dialkynones and NH<sub>4</sub>OAc were performed in dimethylsulfoxide (DMSO) under heating in the presence of potassium tert-butoxide (<i>t</i>-BuOK), affording four conjugated poly(2,4,6-triarylpyridine)s (PTAPs) in satisfactory yields. The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5% weight loss temperatures reaching up to 460 °C. They are also electrochemically active. The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features. Moreover, through simply being doped into poly(vinyl alcohol) (PVA) matrix, the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%. This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1496 - 1504"},"PeriodicalIF":4.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simultaneous Improvement of Strength and Toughness of Poly(lactic acid) via Multiple Dynamic Pressure 多重动压法同时提高聚乳酸的强度和韧性
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-03 DOI: 10.1007/s10118-025-3379-6
Wen-Xu Rao, Lan-Wei Li, Sen-Hao Zhang, Guang-Ming Huang, Jia-Chun Zheng, Chen-Hu Yuan, Zhao-Xia Huang, Jin-Ping Qu
{"title":"Simultaneous Improvement of Strength and Toughness of Poly(lactic acid) via Multiple Dynamic Pressure","authors":"Wen-Xu Rao,&nbsp;Lan-Wei Li,&nbsp;Sen-Hao Zhang,&nbsp;Guang-Ming Huang,&nbsp;Jia-Chun Zheng,&nbsp;Chen-Hu Yuan,&nbsp;Zhao-Xia Huang,&nbsp;Jin-Ping Qu","doi":"10.1007/s10118-025-3379-6","DOIUrl":"10.1007/s10118-025-3379-6","url":null,"abstract":"<div><p>To retain its inherent biodegradability, simultaneously improving the strength and toughness of poly(lactic acid) (PLA) is a significant challenge. In this study, we propose an innovative multiple dynamic pressure (MDP) process that can produce pure PLA with excellent mechanical properties. The MDP process generates a dynamic stretching effect by regulating the application and release of pressure, prompting disordered molecular chains to be arranged regularly along the direction of the dynamic force field. This promoted the formation of more ordered crystal forms (α-form) and strengthened the connection between the crystalline and amorphous regions. Results show that after MDP treatment, the tensile strength and strain at break of MDP-PLA are significantly improved, reaching 91.6 MPa and 80.1% respectively, which are 49.4% higher and 10 times higher than those of the samples before treatment. The mechanical properties of MDP-PLA can be regulated as needed by adjusting the cycle times and peak pressure. In addition, through a systematic study of the structural evolution of MDP-PLA, the performance regulation mechanism of the MDP process was thoroughly investigated, and the internal relationship among the process-structure-performance was clarified. This research not only opens a new technical path for the preparation of high-performance pure PLA but also provides important guidance for the high-performance modification of other semi-crystalline polymers, thus possessing significant scientific and engineering value.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1602 - 1615"},"PeriodicalIF":4.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanocomposite from Alpha-Tocopheryl Succinate and Chitosan-modified-graphene for Efficient Inhibition on Choroidal Melanoma via a Chemotherapy-assisted-photothermal Therapy α -生育酚琥珀酸酯和壳聚糖修饰的石墨烯纳米复合材料通过化疗辅助光热疗法有效抑制脉络膜黑色素瘤
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-03 DOI: 10.1007/s10118-025-3371-1
Feng Yuan, Dan Lin, Yue Zhang, Kang Han, Qing Xu, He Ma, Ping-Ping Huang, Yong Liu, Ling-Dan Kong
{"title":"Nanocomposite from Alpha-Tocopheryl Succinate and Chitosan-modified-graphene for Efficient Inhibition on Choroidal Melanoma via a Chemotherapy-assisted-photothermal Therapy","authors":"Feng Yuan,&nbsp;Dan Lin,&nbsp;Yue Zhang,&nbsp;Kang Han,&nbsp;Qing Xu,&nbsp;He Ma,&nbsp;Ping-Ping Huang,&nbsp;Yong Liu,&nbsp;Ling-Dan Kong","doi":"10.1007/s10118-025-3371-1","DOIUrl":"10.1007/s10118-025-3371-1","url":null,"abstract":"<div><p>High mortality of choroidal melanoma (CM) is mainly attributed to the high likelihood of tumorous recurrence. The essential challenge lies in the presence of residual CM cells survived from the antitumor treatment. These residual tumorous cells are most likely to cause tumorous recurrence. This article reports the preparation of a multifunctional nanocomposite which can be used to treat CM efficiently <i>via</i> a chemotherapyassisted- photothermal therapy (CTH-PTT). The nanocomposite comprises of alpha-tocopheryl succinate (α-TOS) and carboxylic chitosan modified graphene (CG). α-TOS has been potentially seen as an efficient CTH antitumor drug while its deficiency such as easy being hydrolyzed by gastrointestinal esterase and poor hydrophilicity inevitable limits the clinic application of α-TOS. CG is introduced to overcome these shortcomings, offering additional advantages such as the PTT possibility for the antitumor application. The employment of CG-α-TOS on ocular CM cells caused more than 80% inhibition rates after irradiation under an 808 nm laser for 10 min. The outcomes of this work provide a facile and advantageous way to resolve the essential issue of the treatment of ocular tumors such as CM.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 8","pages":"1387 - 1394"},"PeriodicalIF":4.0,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145161548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine Learning-assisted Prediction of Polymer Glass Transition Temperature: A Structural Feature Approach 机器学习辅助预测聚合物玻璃化转变温度:一种结构特征方法
IF 4 2区 化学
Chinese Journal of Polymer Science Pub Date : 2025-07-01 DOI: 10.1007/s10118-025-3361-3
Bardia Afsordeh, Hadi Shirali
{"title":"Machine Learning-assisted Prediction of Polymer Glass Transition Temperature: A Structural Feature Approach","authors":"Bardia Afsordeh,&nbsp;Hadi Shirali","doi":"10.1007/s10118-025-3361-3","DOIUrl":"10.1007/s10118-025-3361-3","url":null,"abstract":"<div><p>Machine learning (ML) has emerged as a powerful tool for predicting polymer properties, including glass transition temperature (<i>T</i><sub>g</sub>), which is a critical factor influencing polymer applications. In this study, a dataset of polymer structures and their <i>T</i><sub>g</sub> values were created and represented as adjacency matrices based on molecular graph theory. Four key structural descriptors, flexibility, side chain occupancy length, polarity, and hydrogen bonding capacity, were extracted and used as inputs for ML models: Extra Trees (ET), Random Forest (RF), Gaussian Process Regression (GPR), and Gradient Boosting (GB). Among these, ET and GPR achieved the highest predictive performance, with <i>R</i><sup>2</sup> values of 0.97, and mean absolute errors (MAE) of approximately 7–7.5 K. The use of these extracted features significantly improved the prediction accuracy compared to previous studies. Feature importance analysis revealed that flexibility had the strongest influence on <i>T</i><sub>g</sub>, followed by side-chain occupancy length, hydrogen bonding, and polarity. This work demonstrates the potential of data-driven approaches in polymer science, providing a fast and reliable method for <i>T</i><sub>g</sub> prediction that does not require experimental inputs.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"43 9","pages":"1661 - 1670"},"PeriodicalIF":4.0,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144918220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信