Applied Catalysis B: Environment and Energy最新文献

筛选
英文 中文
Photocatalytic β-O-4 bond cleavage in lignin models and native lignin through CdS integration on titanium oxide photocatalyst under visible light irradiation 在可见光照射下,通过在氧化钛光催化剂上整合 CdS,光催化木质素模型和原生木质素中的β-O-4 键裂解
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-14 DOI: 10.1016/j.apcatb.2024.124494
Atul Kumar, Rajat Ghalta, Rajaram Bal, Rajendra Srivastava
{"title":"Photocatalytic β-O-4 bond cleavage in lignin models and native lignin through CdS integration on titanium oxide photocatalyst under visible light irradiation","authors":"Atul Kumar, Rajat Ghalta, Rajaram Bal, Rajendra Srivastava","doi":"10.1016/j.apcatb.2024.124494","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124494","url":null,"abstract":"Converting lignin, a key sustainable biopolymer, into valuable oxygen-containing compounds is a significant challenge. To address such a challenge, photocatalytic self-transfer hydrogenolysis strategy is employed utilizing a CdS(x%)/TiO heterojunction photocatalyst, with minimal CdS loading on TiO. The CdS(3 %)/TiO catalyst, under blue light, dehydrogenates HC–OH groups, transferring hydrogen to C–O bonds, cleaving β-O-4 ether bonds in lignin model compounds yielding over 95 % phenols and acetophenones. It utilizes glyceryl moieties as a hydrogen source, yielding ∼ 24 % of diverse lignin monomer derivatives from teak lignin. Improved charge separation in the CdS(3 %)/TiO catalyst is revealed by electrochemical and spectral analyses and exhibits delayed charge carrier recombination. Scavenging studies confirm a type II charge transfer mechanism and support visible-light-driven lignin fragmentation. The present photocatalytic process offers a promising, cost-effective approach for converting lignin into valuable aromatic compounds, advancing renewable biomass-derived chemicals.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cu-Fe bimetallic MOFs with long lifetime separated-state charge for enhancing selectivity for CO2 photoreduction to CH4 具有长寿命分离态电荷的铜铁双金属 MOFs 可提高 CO2 光还原为 CH4 的选择性
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-14 DOI: 10.1016/j.apcatb.2024.124491
Huayong Yang, Guowei Liu, Lixiao Zheng, Min Zhang, Zhongjie Guan, Taifeng Liu, Jianjun Yang
{"title":"Cu-Fe bimetallic MOFs with long lifetime separated-state charge for enhancing selectivity for CO2 photoreduction to CH4","authors":"Huayong Yang, Guowei Liu, Lixiao Zheng, Min Zhang, Zhongjie Guan, Taifeng Liu, Jianjun Yang","doi":"10.1016/j.apcatb.2024.124491","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124491","url":null,"abstract":"Improving the CO to CH conversion efficiency of Cu metal-organic frameworks (Cu-MOFs) catalysts is important for promoting carbon capture and utilization. In this work, a series of novel Cu-Fe bimetallic MOFs photocatalysts (Cu-BTB-Fe with 0.5 wt%, 1.0 wt%, 2.0 wt%, and 4.0 wt% of Fe; HBTB = 1,3,5-tris(4-carboxyphenyl) benzene) were synthesized by a bimetallic site (Cu and Fe) design strategy in order to improve the electron-hole separation efficiency and CO adsorption activation. Findings indicated that the as-synthesized Cu-BTB-2 wt% Fe catalyst exhibited excellent catalytic performance for the conversion of CO to CH and CO under simulated sunlight irradiation, providing a yield of 32.20 mol∙g∙h and a selectivity of 69.24 % for CO to CH conversion as well as a yield of 14.29 mol∙g∙h for CO to CO conversion without liquid phase products. This is because the Cu-Fe bimetallic sites can continuously supply photoinduced electrons with long separated-state decay lifetime to efficiently activate CO. Specifically, the Cu-BTB-Fe catalysts provided a high proportion of effective photoinduced electrons with long decay lifetime for the CO* hydrogenation process through a unique electron transfer mechanism, while the strong affinity between CO and [Cu(COO)]-Fe active units enabled high CO adsorption activation and rapid CO reduction. The present approach, hopefully, would help to establish feasible pathway for the development of novel highly selective Cu-based MOFs photocatalysts for CO photocatalytic reduction yielding CH.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of d-p band centers as efficient active sites for solar energy conversion into H2 by tuning surface atomic arrangement 通过调整表面原子排列优化 d-p 带中心,使其成为将太阳能转化为 H2 的高效活性位点
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-13 DOI: 10.1016/j.apcatb.2024.124500
Yiqi Zhang, Denghui Ma, Shujuan Jiang, Jianjun Zhang, Shaoqing Song
{"title":"Optimization of d-p band centers as efficient active sites for solar energy conversion into H2 by tuning surface atomic arrangement","authors":"Yiqi Zhang, Denghui Ma, Shujuan Jiang, Jianjun Zhang, Shaoqing Song","doi":"10.1016/j.apcatb.2024.124500","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124500","url":null,"abstract":"The lowered reaction energy barrier and accelerated dynamic behavior for photocatalytic HO overall splitting (HOS) involving oriented chemisorption, activation and conversion of *H and oxyhydrogen intermediates are crucial for solar energy conversion into H (STH). Herein, the localized heterojunction (Cd-S-Ni) composed of NiS and CdS tuning surface atomic arrangement with S atoms as the shared ligands has been constructed to synchronously elevate and optimize Ni 3 (Ni ) and S 2 (S ) band centers as efficient active sites for chemisorption of oxyhydrogen and *H intermediates with a declined Cd 4 band center (Cd ) to suppress reverse reaction. A sustainable STH of 3.21 % under AM 1.5 G has been completed over Cd-S-Ni with a decreased activation energy for H evolution, verified by fs-TAS, DRIFTS and dynamic DFT. These results devote to solving the reaction energy barrier and dynamical bottleneck for HOS by optimizing and .","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"59 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142205169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dual confinement of RuOx nanoparticle using polar MnNiO and armored carbon for boosting water electrolysis 利用极性 MnNiO 和铠装碳对 RuOx 纳米粒子进行双重限制,以促进水的电解
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-13 DOI: 10.1016/j.apcatb.2024.124504
Ning Wen, Xiaoxiao Duan, Ruiying Chai, Xiuling Jiao, Yuguo Xia, Dairong Chen
{"title":"Dual confinement of RuOx nanoparticle using polar MnNiO and armored carbon for boosting water electrolysis","authors":"Ning Wen, Xiaoxiao Duan, Ruiying Chai, Xiuling Jiao, Yuguo Xia, Dairong Chen","doi":"10.1016/j.apcatb.2024.124504","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124504","url":null,"abstract":"The poor stability of nanoparticle catalysts with catalytic activity is a significant obstacle to their industrial application. The establishment of rational nanoparticle structures to elucidate the relationship between catalyst structure and its catalytic activity and stability is crucial for constructing nanoparticle catalysts that are both highly active and stable. We propose a strategy to construct a dual-confinement effect of the nanoparticle, specifically by regulating the polarization of the MnNiO support to enhance strong oxide-support interactions (SOSI) and encapsulating the outer layer of nanoparticles with a carbon shell, which has been proven effective in improving the activity and stability of nanoparticle-based oxygen evolution reaction (OER) electrocatalysts. At a current density of 100 mA cm, the armor C@RuO@MnNiO catalyst displays an overpotential of 260 mV for the OER. After the OER test for 100 h, the current density of C@RuO@MnNiO shows no significant decay, whereas that of RuO@MnNiO and RuO@MnO rapidly decreases, indicating significant catalytic activity and stability of the catalyst. The assembled C@RuO@MnNiO||Pt/C electrode demonstrates excellent alkaline water electrolysis performance in an MEA electrolyzer, requiring only a low cell voltage of 1.76 V to achieve an ampere-level current density of 1 A cm. In-situ electrochemical Raman spectroscopy reveals the significant interaction between nanoparticles and the polar support. The reduction in Gibbs free energy, which establishes the rate-determining step (RDS) of OER, is caused by the charge redistribution caused by polar Mn doping in RuO@MnNiO and the coordination structure modifications, as shown by density functional theory calculations. This work provides an approach to designing efficient and stable nanoparticle electrocatalysts through the dual-confinement effect of SOSI-induced strong interactions and armor carbon layers.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"61 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
FeNi-LDH nanoflakes on Co-encapsulated CNT networks for stable and efficient ampere-level current density oxygen evolution 共封装 CNT 网络上的 FeNi-LDH 纳米片,用于实现稳定高效的安培级电流密度氧演化
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-13 DOI: 10.1016/j.apcatb.2024.124506
Xian Wang, Ze Qin, Jinjie Qian, Liyu Chen, Kui Shen
{"title":"FeNi-LDH nanoflakes on Co-encapsulated CNT networks for stable and efficient ampere-level current density oxygen evolution","authors":"Xian Wang, Ze Qin, Jinjie Qian, Liyu Chen, Kui Shen","doi":"10.1016/j.apcatb.2024.124506","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124506","url":null,"abstract":"Developing low-cost but efficient electrocatalysts for continuous oxygen evolution reaction (OER) at ampere-level current densities can promote the hydrogen economy. LDHs are promising electrocatalysts to replace noble-metal-based catalysts for efficient OER, and rationally constructing LDH-based heterostructures can further boost their OER activities. Herein, we report the anchoring of FeNi-LDH nanoflakes onto MOF-derived carbon nanotube (CNT) networks on carbon cloth to obtain the self-supported LDH/CNT/CC. Benefiting from the advantages of its CNT network and the highly-active sites of its three-layer heterostructure, the optimized LDH/CNT/CC only requires a low overpotential of 200 mV at 10 mA cm and exhibits robust stability under continuous electrolysis for 160 h at an ampere-level current density of 1 A cm. Theoretical calculations show three-layer FeNi-LDH(001)/graphene(002)/Co(111) slab has the lowest OER energy barrier, and its graphene layer can gain electrons from the FeNi-LDH and Co to show the most suitable binding strength for intermediates to facilitate OER.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142226243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced photocatalytic performance of 0.1Bi-MIL-101-NH2 after phosphorus adsorption: Synergistic effect of adsorption and photocatalysis 吸附磷后 0.1Bi-MIL-101-NH2 的光催化性能增强:吸附与光催化的协同效应
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124487
Yinghao Li, Ying Li, Qinglong Meng, Ke Jing, Jingyi Zhang, Qingyu Guan
{"title":"Enhanced photocatalytic performance of 0.1Bi-MIL-101-NH2 after phosphorus adsorption: Synergistic effect of adsorption and photocatalysis","authors":"Yinghao Li, Ying Li, Qinglong Meng, Ke Jing, Jingyi Zhang, Qingyu Guan","doi":"10.1016/j.apcatb.2024.124487","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124487","url":null,"abstract":"Achieving efficient phosphorus recovery and reuse from wastewater presents formidable challenges. In this study, a synergistic adsorption photocatalysis process was successfully constructed. 0.1Bi-MIL-101-NH showed the maximum phosphorus adsorption performance of 112 mg/g. After phosphorus adsorption, photoelectrochemical measurements confirmed that the photoelectric properties of the 0.1Bi-MIL-101-NH-P sample was improved, and the degradation efficiency of SMX was increased by 20 % within 120 min. Meanwhile, the mineralization rate reached 91 %. The incorporation of Bi significantly enhanced the adsorption energy of the 0.1Bi-MIL-101-NH sample. Notably, the presence of phosphorus on the surface of 0.1Bi-MIL-101-NH-P enhanced the adsorption of water molecules by the material, thereby augmenting the generation of •OH. •O and •OH played dominant roles in the photodegradation of SMX. Finally, the degradation pathways of intermediates were further studied by Density functional theory (DFT) calculations and LC-MS analysis. This study provides a new avenue for phosphorus recovery and organic pollutant degradation.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production 新型钯装饰石墨二炔调节 d 波段中心增强了平方米级和煤化工废水高效制氢的能力
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124488
Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin
{"title":"A novel palladium decorated graphdiyne regulating d band center enhanced the ability of square meter scale and coal chemical wastewater for efficient hydrogen production","authors":"Jingzhi Wang, Mei Li, Youlin Wu, Nini Zhao, Zhiliang Jin","doi":"10.1016/j.apcatb.2024.124488","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124488","url":null,"abstract":"The large amount of organic wastewater generated by the coal chemical industry requires multiple processes to remove harmful substances, which is costly. Based on this, palladium-modified GDY (Pd-GDY) was prepared for the first time, using acetylene gas generated from carbide slag as a precursor. And grow CdS on its surface to form Pd-GDY/CdS heterostructure material. The photocatalytic performance in coal chemical wastewater can reach 7.35 μmol·g·h. Meanwhile, in the industrial hydrogen production experiment on a square meter scale, the hydrogen production rate reached 3.42 mmol·h. Density functional theory (DFT) calculations indicate that the excellent hydrogen evolution activity is attributed to the regulation of the d band center by Pd-GDY. More antibonding energy bands are below the Fermi level, filled with electrons, reducing bond stability and adsorption strength, resulting in a decrease in hydrogen adsorption free energy. Overall, this work provides new insights into the synthesis of novel graphdiyne and its application in wastewater and industrial hydrogen production based on regulating d band center in heterogeneous catalytic systems.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"120 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions 在降低过一硫酸盐消耗量的情况下加强对高氯化物有机废水的处理:氯离子激发的 Fe(IV)=O 的形成途径
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-08 DOI: 10.1016/j.apcatb.2024.124471
Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo
{"title":"Enhanced treatment of high chloride organic wastewater under lower peroxymonosulfate consumption: A pathway for the formation of Fe(IV)=O excited by chloride ions","authors":"Xianjing Liu, Ying Wang, John Crittenden, Qi Su, Huatao Mo","doi":"10.1016/j.apcatb.2024.124471","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124471","url":null,"abstract":"The inhibition of oxidation efficiency and the formation of toxic chlorinated organic byproducts owing to Cl still represent a significant threat to the treatment of high chloride organic wastewater using advanced oxidation processes. This study explores new pathways for utilizing Cl to promote the formation of Fe(Ⅳ)=O by single atom Fe-CNs catalysts under peroxymonosulfate (PMS) system, which significantly increases sulfamethoxazole (SMX) degradation rate constant by 2.97 times, enhances PMS utilization efficiency (reducing by 92 % PMS consumption) and simultaneously avoids the formation of chlorinated organic byproducts. Experiments and theoretical calculation revealed that the in-situ generated HClO (generated via the reaction of PMS and Cl) more easily reacts with Fe–pyridinic N active sites of Fe-CNs catalysts to generate Fe(Ⅳ)=O through a lower-energy-barrier pathway, rather than directly oxidates pollutants. This study provides an approach to utilize omnipresent Cl achieving high efficiency, high selectivity, low PMS consumption and harmless treatment for chloride-containing organic wastewaters.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"41 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal analysis of products (TAP) reactor study of the dynamics of CO2 interaction with a Ru/γ-Al2O3 supported catalyst II: Interaction strength, formation of intermediates and oxygen exchange 对二氧化碳与 Ru/γ-Al2O3 支承催化剂相互作用动力学的产品时相分析(TAP)反应器研究 II:相互作用强度、中间产物的形成和氧交换
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-06 DOI: 10.1016/j.apcatb.2024.124460
Corinna Fauth, Ali M. Abdel-Mageed, R.Jürgen Behm
{"title":"Temporal analysis of products (TAP) reactor study of the dynamics of CO2 interaction with a Ru/γ-Al2O3 supported catalyst II: Interaction strength, formation of intermediates and oxygen exchange","authors":"Corinna Fauth, Ali M. Abdel-Mageed, R.Jürgen Behm","doi":"10.1016/j.apcatb.2024.124460","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124460","url":null,"abstract":"Continuing a comprehensive study of the reduction of CO over supported Ru catalysts, we explored the interaction of CO with Ru/γ-AlO by TAP reactor measurements, focusing on dynamic aspects in adsorption/desorption, reaction and oxygen exchange processes. Pulse shape analysis in H/CO multipulse sequences provides information on the interaction of reactant/product species with the catalyst. The measurements provide information on the dynamic build-up of reaction intermediates and more stable adspecies during pulsing, and its relation to CH formation. Facile oxygen exchange between CO and catalyst, followed by isotope labeling experiments, is quantitatively reconciled in a simple model, relating the ratio between different CO isotopologues to the O:O ratio in the total exchangeable oxygen on the surface and in the CO pulse. The results provide detailed insight into various aspects of the interaction between CO and Ru/AlO catalysts important for a mechanistic understanding of various catalytic reactions involving CO.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis 协调非晶氧化铟纳米纤维电子结构、界面和微环境的三重奏策略,用于选择性电化学氨合成
Applied Catalysis B: Environment and Energy Pub Date : 2024-08-06 DOI: 10.1016/j.apcatb.2024.124466
Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding
{"title":"Trio strategy of harmonizing electronic structure, interface, and microenvironment on amorphous indium oxide nanofiber for selective electrochemical ammonia synthesis","authors":"Siyu Qiang, Hualei Liu, Fan Wu, Shuyu Liu, Sijuan Zeng, Yihe Yin, Fei Wang, Jianyong Yu, Yi-Tao Liu, Bin Ding","doi":"10.1016/j.apcatb.2024.124466","DOIUrl":"https://doi.org/10.1016/j.apcatb.2024.124466","url":null,"abstract":"Suppressing parasitic hydrogen evolution reaction (HER) remains a dilemma in developing aqueous electrochemical nitrogen reduction reaction (NRR). Nevertheless, previous studies have revealed the significant challenge of relying solely on electrocatalyst design to pursue selective NRR. Herein, we present a ‘Trio’ strategy to harmonize electronic structures of electrocatalysts, properties of interfaces, and configurations of microenvironments, thereby governing the intricate proton behaviors throughout the reaction, to suppress HER while boosting NRR. As proof-of-concept demonstration, the first designed amorphous InO-based nanofiber electrocatalyst, with optimized electronic state by oxygen vacancy and anchoring Mo species, is in conjunction with low-surface-energy monolayer interface and molecular-crowding microenvironment. Such rational synergy creates an advantageous catalytic configuration with decelerated proton diffusion and restricted proton transfer to active sites, thus achieving NH yield of 59.72 μg h mg and a FE of 30.60 %. We expect these findings will inspire “collaborative combat” strategies and desirable systems of NRR in the future.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141943253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信